Application Notes and

Development Tools for
80C51 Microcontrollers

. LOW
ANALOG- VOLTAGE
TO-DIGITAL ‘ LOW
‘ POWER

VERY
SMALL
PACKAGES

EXTENDED 5 : i MEMORY
; ; F 1kTO 32K

SPECIAL EEPROM
FUNCTIONS & CCU

SERIAL

1°’C,CAN & §

ACCESS.bus |
BUS J

1995 DATA HANDBOOK

Philips PHILIPS
Semiconductors E3N p H I L I ps
Y

QUALITY ASSURED

Our quality system focuses on the continuing high quality of our
components and the best possible service for our customers. We have
athree-sided quality strategy: we apply a system of total quality control
and assurance; we operate customer-oriented dynamic improvement
programmes; and we promote a partnering relationship with our
customers and suppliers.

PRODUCT SAFETY

In striving for state-of-the-art perfection, we continuously improve
components and processes with respect to environmental demands.
Our components offer no hazard to the environment in normal use
when operated or stored within the limits specified in the data sheet.

Some components unavoidably contain substances that, if exposed by
accident or misuse, are potentially hazardous to health. Users of these
components are informed of the danger by warning notices in the data
sheets supporting the components. Where necessary the warning
notices also indicate safety precautions to be taken and disposal
instructions to be followed. Obviously users of these components, in
general the set-making industry, assume responsibility towards the
consumer with respect to safety matters and environmental demands.

All used or obsolete components should be disposed of according to
the regulations applying at the disposal location. Depending on the
location, electronic components are considered to be 'chemical,
'special' or sometimes 'industrial' waste. Disposal as domestic waste is
usually not permitted.

Application Notes and Development Tools
for 80C51 Microcontrollers

CONTENTS

page
SECTION 1 GENERAL INFORMATION 5
SECTION 2 INTER-INTEGRATED CIRCUIT (12C) BUS 37

SECTION 3 [2C SERIAL BUS APPLICATION NOTES
& ARTICLES 65

SECTION 4 ACCESS.bus TECHNICAL OVERVIEW 273

SECTION 5 ACCESS.bus APPLICATION NOTES
& ARTICLES 289

SECTION 6 CONTROL AREA NETWORK (CAN) BUS 333
SECTION 7 87C750, 8XC751, 8XC752

APPLICATION NOTES 413
SECTION 8 OTHER 80C51 APPLICATION NOTES

& ARTICLES 575
SECTION 9 DEVELOPMENT SUPPORT TOOLS 757

APPENDIXA DATA HANDBOOK SYSTEM 842

Philips Semiconductors

Application Notes and
Development Tools for
80C51 Microcontrollers

March 1995

Preface

Microcontrollers from Philips Semiconductors

Philips Semiconductors 8 and 16-bit microcontrollers are based on the
widely-accepted 8048, 8051 and 68000 architectures. We offer most of the
‘industry standard’ products in these architectures as well as a large selection of
powerful derivative products. These derivatives offer a wide assortment of features,
including: additional memory, A/D, PWM, additional timers, DTMF, OSD, OTP, EMC
and EMI, plus many others. The variety of product derivatives allows Philips
Semiconductors to support a broad range of functions in consumer, telecom, EDP,
multi media, automotive and industrial applications.

For detalils, see:

©® 8048 ‘industry standard’ architecture types (PCF84CXXX family) in “Data
Handbook IC14”.
The PCD33XX family covers telecom terminal family devices based on the 8048
core and instruction set, in “Data Handbook IC03”.

® 8051 ‘industry standard’ architecture types in “Data Handbook IC20".

® 68000 compatible ‘industry standard’ architecture types in “Data Handbook
Ic21".

The Low Power 80CL51 family of derivatives can be found in “Data Handbook
IC20". These devices operate over the wide voltage range of 1.8 to 6.0V and are
ideal for portable and battery operations.

Many of Philips Semiconductors ICs offer on-board UART serial ports and 12C-bus.
The 12C-bus allows easy connection to over 100 other devices, thereby increasing
system capabilities even further. We also offer the Philips/Digital Equipment
Corporation ACCESS.bus, a new Standard Desktop bus. And for automotive and
industrial applications, we also offer the CAN and the VAN serial bus. The CAN
standard, developed by Bosch, and VAN concepts offer high noise immunity and
error correction.

Philips Semiconductors 16-bit microcontroller family is based on the 68000
architecture. While these are called 16-bit microcontrollers, the 68000 CPU core
architecture is a 32-bit. This offers the user a great deal more processing power
when the need arises in a design to move from an 8-bit to a 16-bit microcontroller.

Philips Semiconductors 16-bit microcontrollers are software compatible with
existing 68000 code. Future developments include the introduction of SPARC and
Trimedia devices.

Philips Semiconductors is developing a family of 16-bit microcontrollers based on
the 8051 ‘XA’ (eXtended Architecture). This family of microcontrollers will offer
advanced performance for those applications that are computation and memory
intensive in an embedded control environment.

Philips Semiconductors

Application Notes and
Development Tools for
80C51 Microcontrollers

Section 1
General Information

CONTENTS
COMENES .. ettt e e 7
ProductStatus 13
80C51 microcontroller family features guide 14
8051 microcontroller cross-reference guide 18
Low power / low voltage microcontroller familyol 19
80C51 microcontroller development system supportcovinineninnnn... 20
8-bit microcontroller demonstration and evaluation boards 22
Microcontroller bulletin boardsc.coouiiiiiiiii 23
Philips Fax-On-Demand Systemuiiiiiiii i, 24
CMOS and NMOS 8-bit microcontroller familycooveeinneeennn.... 25
CMOS 16-bit microcontrollerfamilyooiiiiiiiiiiinin e, 33

Orderinginformationiiuiitiiiiiii i 34

Philips Semiconductors Application Notes and Development Tools for 80C51 Microcontrollers

S
CONTENTS

L —————————————

APPLICATION NOTES AND DEVELOPMENT TOOLS FOR 80C51 MICROCONTROLLERS

PrBIACE . .. 3
Section 1 - General Information
oM NS . 7
ProductStatusoilla 13
80C51 microcontroller family features guide .. 14
8051 microcontroller cross-reference guide 18
Low power / low voltage microcontroller family 19
80C51 microcontroller development system support 20
8-bit microcontroller demonstration and evaluation boards 22
Microcontroller bulletin DOAIASiii e et 23
Philips Fax-On-Demand System 24
CMOS and NMOS 8-bit microcontroller family . . . 25
CMOS 16-bit microcontroller familyoiuii i 33
Ordering information 34
Section 2 - Inter-Integrated Circuit (12C) Bus
THe 12C-DUS @NA NOW 10 US it v ettt e et e 39
12C peripheral selection GUIAR - o 58
82B715 PCBUS @XIBNUETottt 60
Section 3 — I2C Serial Bus Application Notes & Articles
AN422 Using the 8XC751 microcontroller as an 12C bus MaSteruuuueeeeneeneeeeee e 67
AN425 Interfacing the PCD8584 12C-bus controller to 80C51 family microcontrollers 85
AN430 Using the 8XC751/752 in multimaster 12C applicationsuueeuneeeie e, 104
AN433 12C slave routines for the 83C751uue ittt e e e e 140
AN434 Connecting a PC keyboard t0 the I2C-DUSuueiit ettt e e e 146
AN438 12C 1OULINES fOF BXCB28o\ttt e e et e e e e 164
AN444 Using the P82B715 12C extender onong CabIeseeeeieteie et 186
ETV/AN89004 PLM51 I2C software interface 1C51 (VErSion 0.5)ueun e 206
EIE/AN91007 12C driver routines for 8XC751/2 MICrocontrollersooivue e e 215
Programming the I2CINBITACE\ttt ettt et e et e e 269
Section 4 - ACCESS.bus Technical Overview
ACCESS.bus TeChNICal OVEIVIEWttt e e e 275
Introduction o, 275
What is ACCESS.bus? 275
ACCESS.bus Hardware 275
ACCESS.bus Protocols 276
How ACCESS.busWorks 277
Electricalcooiiiiiiiiii 277
BUS TransaCtions oot 277
SYNCRIONIZAtIONottt e 279
Byte Framing and Acknowledgement 279
Addressing 279
AMDITEION .. .o 279
Message Format 279
Control/Status Messages 279
Configuration 280
Device Identifiers N 281
Device Capabilities Information 281
Application Device Types 282
Keyboard Deviceso... 282
Locator Devicesouiiiininn.. 282
TextDevicescooviiiiiiiiiii.... 282
TimingRulesooiiiiiiii 282
Transaction TimingRules 282
Response Timeouts 282
Software Architecture and Development 282
Device Firmware DevelopMENtuuuut ettt e 283
Host Software ArchiteCture i 283

March 1995 7

Philips Semiconductors Application Notes and Development Tools for 80C51 Microcontrollers

CONTENTS
DeVEIOPMENT SUPPOM ..ottt ettt ettt ettt et et 283
ACCESS.bus Industry Group 283
Philips Semiconductors Support 283
ACCESS.bus developmentkit 284
ACCESS.bus PC/AT CONrOllEr DOAIA . . .« ettt ettt et e e e e e a e e e et n et s it i e et e ae e 286
Section 5 - ACCESS.bus Application Notes & Articles
AN445 ACCESS.bus mouse application code for the 8XC751 microcontrofleroooiine. See Section 7
Issues in desktop connectivity 291
Finally, a plug-and-play solution 295
Special Report: ACCESS.bus Specs ANd ProdUCESviun et 297
ACCESS.bus: A New Peripheral Bus 299
Embedded control using ACCESS.bus 301
A PC-10-ACCESS.DUS INtEIFACE CAIA . ..ot ett ettt ettt it ettt et ettt i e e ea e an s an e e e e 309
TAKING @ NEW DUS .. ettt et ettt e ittt e et e et e ettt e e et 312
Personal Digital Assistants: What's MiSSING? ittt 318
The portable desktop: New connections for today’s mobile userot 320
Who's hopping on the ACCESS.DUS?ttt et e ettt a et 322
ACCESS.bus revisited—ending the peripheral connection nightmare 324
SEHOUSIY SETIAI .. .o e\ttt ettt ettt ettt et e e e e e 327
Section 6 - Control Area Network (CAN) Bus
Control Area Network (CAN) OVEIVIEW ettt ettt ittt et ettt a e e a et an e s 335
82C150 CAN serial linked I/0 device (SLIO) with digital and analog port functions 336
82C200 Stand-alone CAN-controllerot 365
PCA82C250 CAN controllerinterfaceouuuine i i e 401
Section 7 — 87C750, 8XC751, 8XC752 Application Notes
AN422 Using the 8XC751 microcontroller as an 12C bus Masterouuiieieiiiunneeerenineennns See Section 3
AN423 Software driven serial communication routines for the 83C751 and 83C752 microcontrollers 415
AN426 Controlling air core meters with the 87C751 and SAS775 ..ottt 420
AN427 Timer | for the 83/87C748/749 and the 83/87C751/752 (non-12C applications) microcontrollers 434
AN428 Using the ADC and PWM of the 83C752/87C752oiinintiiii ittt 440
AN429 Airflow measurement using the 83/87C752 and “C”cuiuiiiiiniin i 447
AN430 Using the 8XC751/752 in multimaster 12C applicationsuuuiieeeeiinnaeeenineneans See Section 3
AN433 12C slave routines for the 83C751iiniuitiii ittt -See Section 3
AN436 “Opti-Mizer” power management for notebook computers using the 8XC752 microcontroller 466
AN439 87C751 fast NICad Chargerttt ittt e e et s e e e 476
AN442 (BCM) 87C751 Specification for a bus-controlled monitor 488
AN445 ACCESS.bus mouse application code for the 8XC751 microcontrollercooiiiiiiiiiiiinn, 505
AN446 A software duplex UART forthe 751/752t i 535
AN453 Using the 87C751 microcontroller to gang program PCF8582/PCF8581 EEPROMSooevvnene 543
AN454 Interfacing the 83C576/87C576t0the ISADUS i i 562
EIE/AN91007 12C driver routines for 8XC751/2 mMicrocontrollersc.vuuuenorimnenieaiiianeiannenans See Section 3
Section 8 — Other 80C51 Application Notes & Articles
AN408 80C451 0peration Of PO 6ou ettt 577
AN417 256k Centronics printer buffer using the 87C451 microcontrollero i, 588
AN418 Counter/timer 2 of the 83C552 microcontrollert i 601
AN420 Using up to 5 external interrupts on 80C51 family microcontrollers oot 608
AN424 8051 family warm boot determinationso 610
AN440 RAM loader program for 80C51 family applicationsc.oo i 612
AN443 IEEE Micro Mouse using the 87C751 microcontroller i 621
AN447 Automatic baud rate detection for the 80C51t 642
AN448 Determining baud rates for 8051 UARTs and other UART iSSUBSouinitiiiineninieiiaennns 645
ESG89001 Electro magnetic compatibility and printed circuit board (PCB) constraintsooooiiiinann 648
EIE/AN91001 Workbench EMC evaluation Methodoutiuii ittt ienae e 667
EIE/AN91006 A/D conversion with P83CLATO PCF1252-X ... ieiiiitieie et iiiate e et eaae e ee s 684
EIE/ANS1009 Driver for 8XCB851 E2PROM ...ttt ittt e ettt et et ittt et e i e a et 700
EIE/AN9S2001 Low RF-emission applications with a PB3CE654 microcontrollerooiiiiiiiiiiiiiianns 715

March 1995 8

Philips Semiconductors Application Notes and Development Tools for 80C51 Microcontrollers

CONTENTS
EIE/AN93017 Using the analog-to-digital converter of the 8XC552 microcontroller 727
Chips push CAN bus into embedded Worldcoooeeee i 745
Add Text Overlay to Any Video DISPIAYoouuiunaiieniaee 747
Section 9 — Development Support Tools
Development SUPPOMt OISouuiuiiii it 759
Ashling CTS51 Microprocessor development systems for Philips microcontrollers 766
BSO/Tasking: The total development solution for the 8051 family .. 771
CEIBO DB-51 Development BOAMottt et e 778
CEIBO DS-51 In-Circuit Emulator 780
CEIBO DS-300 Peripheral Development TOOISoouiiininiei i 788
CEIBO DS-750 Microcontroller Development Tool 790
CEIBO DS-752 Microcontroller Development Tool . .. 792
CEIBO EB-51 Emulation BOArdoooooiiii 794
CEIBO MP-51 Programmeroioiuiiiiiii i 796
MetaLink iceMASTER-PE 8051 Family In-Circuit EMUIBtON 798
MetaLink iceMASTER 8051 Family In-Circuit EMUIators .._ 803
NOHAU EMUL51-PC — PC-based in-circuit emulator .._._ 816
PDS51 827
LCP Programmers for 87C51 and Derivatives 831
S87C00KSD 8XC51 and I12C Bus Evaluation Board 834
OM4130 835
OM4239 836
OM4240 837
OoM4272 838
OM4280 839
PEB552 840
Appendix A - Data Handbook System 842

March 1995 9

Philips Semiconductors Application Notes and Development Tools for 80C51 Microcontrollers

CONTENTS

1C20: 80C51-BASED 8-BIT MICROCONTROLLERS

PEIACE .« o v v s e e e e e e e e e e e e e e e et 3
Section 1 — General Information

COMEENS .« e v e e e e e e e et e e e e e e m e ettt e e eeeea et 7

PrOGUCE STAIUS « .+« « v v e v e e et e e e e e e e e st e e e s e ea e e s et e e e e s e s e et e e 13

80C51 microcontroller family featUres QUIAEovvveeetieeetn ittt 14

8051 microcontroller Cross-reference QUIAEoouerneeneeuan e 18

Low power / low voltage microcontroller BAIMIIY e e e 19

80C51 microcontroller development SYStEM SUPPOItcvuneuun ettt i 20

March 1995

8-bit microcontroller demonstration and evaluation boards 22
Microcontroller bulletinboardsccooviiiiiiiianes 23
Philips Fax-On-Demand Systemccoovnieiiannes 24
CMOS and NMOS 8-bit microcontroller family 25
CMOS 16-bit microcontroller family 33
OrAEANGINTOMMALION . . .+ .o ettt et e et ettt s et e s st s s 34
Section 2 — 80C51 Technical Description
BOCST AICIIIECIUIE . .+« e ettt et et e et e et e e e e e e ettt e e st et et e et e st 39
80C51 hardware description 54
80C51 programmer’s guide and INSIUCHON SEt uiiiiii et e 79
80C51T EPROM PrOGUCES . . -« « c v veuen et e ees s e ettt e s s s et et s s s st s st s 134
Section 3 — 80C51 Family Derivatives
80C31/80C51/87C51 CMOS single-chip 8-bit MICrOCONIIONIETuiui it 141
80C51FA/83C51FA/87C51FA CMOS single-chip 8-bit microcontrollercooouiiiiiiniieiiiirreree s 159
83C51FB/87C51FB CMOS single-chip 8-bit MICroCONtrollersoiuiniiiinimaii e 187
83C51FC/87C51FC CMOS single-chip 8-bit microcontrollersooooiiiiriieiiniieaeen. 214
80CL.31/80CL51 Low-voltage single-chip 8-bit microcontrollers 242
83L51FA/87L51FA CMOS single-chip 3.0V 8-bit microcontroller 276
83L51FB/87L51FB CMOS single-chip 3.0V 8-bit microcontroller 292
80C32/80C52/87C52 CMOS single-chip 8-bit microcontrollerso 308
80C54/87C54 CMOS single-chip 8-bit microcontrollersot 329
80C58/87C58 CMOS single-chip 8-bit MICrOCONrONIETSo\ ettt 349
83C055/87C055 Microcontroller for television and video (MTV) ...ttt 369
P83CL168; P83CL167
P83CL268; P83CL267 Microcontroller for TV OSD, VST and control functionsc.ooiiiiiiiiieinenns 388
80CL410/83CL410 Low voltage/low power single-chip 8-bit microcontroller with 2C i 485
80C451/83C451/87C451 CMOS single-chip 8-bit MICroCONrolleroouiiiiiiiiii e 507
80C453/83C453/87C453 CMOS single-chip 8-bit MICrocoNtrolleroiiuiiiiiiiiii e 527
83C504/87C504 CMOS single-chip 8-bit microcontrollero 550
83C508/87C508 CMOS single-chip 8-bit microcontrolleroviuiiiiiiiiii s 568
P83C524 8-Dit MICTOCONtIONIET . ..ttt et et ittt et et ettt i i e 585
87C524 CMOS single-chip 8-bit MICTOCONTONETttt 606
80C528/83C528 CMOS single-chip 8-bit MICTOCONOlIETottt 626
87C528 CMOS single-chip 8-bit microcontrollero.iuiiiiiiiiiii e 644
P8xCE528 8-bit microcontroller With EMCo e 666
83C542/87C542 ACCESS.bUS™ MICrOCONIONET\ttt e i m e 693
80C550/83C550/87C550 CMOS single-chip 8-bit microcontroller with A/D and watchdog timeroooennnnns 715
BXCE52/562 OVEIVIEW o e oo ettt e e e e e e e e e et e e e et ettt et et e e e e e e a e e e e 739
8XC552 OVERVIEW 739
83C562 OVERVIEW 739
Differences From the B0CSTttt ittt et ettt et e i e e e et e e e 739
PrOGram MEITIOTYttt ettt ettt e e e ettt e et e st e et e et 739
Data Memory 739
Special FUNCHON REGISTEISottt ettt ettt et 739
LSt T= e 12 EE R R 740
Timer T3, The Watchdog Timer 746
LYY= |1 7L N R 747

Philips Semiconductors Application Notes and Development Tools for 80C51 Microcontrollers

CONTENTS

RS CIrCUIITYottt et e e 780
Interrupts 781
1/0 Port Structure 785
Port 1 Operation 785
Port 5 Operation 785
Pulse Width Modulated Outputs . 785
Analog-to-Digital Converter 785
Power Reduction Modes 791
Memory Organization e 793
80C552/83C552 Single-chip 8-bit microcontroller with 10-bit A/D, capture/compare timer, high-speed outputs, PWM 798
87C552 Single-chip 8-bit microcontroller with 10-bit A/D, capture/compare timer, high-speed outputs, PWM 818
P83CES558/P80CE558/
P89CES58 Single-chip 8-bit microcontrollero 839
P83CE559/P80CE5S59 Single-chip 8-bit microcontroller 908
80C562/83C562 Single-chip 8-bit microcontroller with 8-bit A/D, capture/compare timer, high-speed outputs, PWM 976
80C575/83C575/87C575 CMOS single-chip 8-bit microcontrollert 989
83C576/87C576 CMOS single-chip 8-bit MICroCONtrollero.uuie et e 1024
80CL580/83CL580 Low-voltage single-chip 8-bit microcontrollerc.coiiuiiiiiiiiaaiainn.. 1063
P8XC592 8-bit microcontroller with on-chip CANo it 1103
P8XCE598 8-bit microcontroller with on-chip CAN e 1212
80C652/83C652 CMOS single-chip 8-bit microcontrolleroviuieiiiiiiiiiiiiiiiaa... 1320
87C652 CMOS single-chip 8-bit miCrocontrolleroiiiuiuiiiiiiie e, 1338
83C654 CMOS single-chip 8-bit microcontrollerc.oviiiniiiiii i 1358
87C654 CMOS single-chip 8-bit microcontrollero.iuiii i, 1376
83CE654 CMOS single-chip 8-bit microcontroller with Electromagnetic Compatibility improvements 1397
83C748/87C748 CMOS single-chip 8-bit microcontrollerooiiuiiiiiiiiii e, 1411
83C749/87C749 CMOS single-chip 8-bit microcontrollerc..iuiiiin e iaeiaeninn.. 1424
83C750/87C750 CMOS single-chip 8-bit microcontrollersuuieii .. 1439
83C751/87C751 CMOS single-chip 8-bit microcontrollerouueiniei it 1449
83C752/87C752 CMOS single-chip 8-bit microcontroller with A/D, PWMccoiiiuiininnnnnn.. 1467
83CL781/83CL782 Low-voltage single-chip 8-bit microcontrollerscoooieiiuiuiiianinnnnin, 1485
80C851/83C851 CMOS single-chip 8-bit microcontroller with on-chip EEPROMccc.oio... 1518

Section 4 — High Performance 16-bit 80C51 XA (eXtended Architecture)
80C51XA Architectural overview
XA-G3 CMOS single-chip 16-bit microcontroller
80C51XA Development tools

Section 5 — Package Outlines

Plastic Dual In-Line Package

DIP8: plastic dual in-line package; 8 leads (300 mil)c.iueiininineeeiaaannnn, SOT97-1
24-pin (300 mils wide) plastic dual in-line (N) packageovvueuneneennnn... SOT101/0410D
DIP28: plastic dual in-line package; 28 leads (600 Mil)couieneunineenanannannnnns. SOT117-1
28-pin (600 mils wide) plastic dual in-line (N) packageccovvveiinninennnnn.. 0413B
DIP40: plastic dual in-line package; 40 leads (600 Mil)oevueneneneneneaaannnn, SOT129-1
Plastic Shrink Dual In-Line Package
SDIP42: plastic shrink dual in-line package; 42 leads (600 Mil)cceuneerunneennnn.. SOT270-1
SDIP64: plastic shrink dual in-line package; 64 leads (750 Mil)ueeeeeeeeennnnn.. SOT274-1
Ceramic Dual In-Line Package
24-Pin (300 mils wide) Ceramic Dual In-line (F) Package (with Window (FA) Package) 0586B
28-Pin (600 mils wide) Ceramic Dual In-line (F) Package (with Window (FA) Package) 0589B
40-Pin (600 mils wide) Ceramic Dual In-line (F) Package (with Window (FA) Package) 0590B
Plastic Leaded Chip Carrier
28-Pin (300 mils wide) Plastic Leaded Chip Carrier (A)Package SOT261/0401F
44-Pin Plastic Leaded Chip Carrier (A) Packagec.ouueuiiuiinininnennnnnnn.. 0403G
44-pin plastic leaded chip carrier; pocket version (A) package SOT187.........
PLCC68: plastic leaded chip carrier; 6818adSvveureiieii i, SOT188-2.......
68-Pin Plastic Leaded Chip Carrier (A) Packageoouiiinineninnannna... 0398E

March 1995 QL

Philips Semiconductors Application Notes and Development Tools for 80C51 Microcontrollers

CONTENTS

Ceramic Leaded Chip Carrier
44-pin CerQuad J-Bend (K) Package
68-pin CerQuad J-Bend (K) Package
68-Pin Chip Carrier, J-Bend (L) Package

Ceramic leaded chip carrier (window); 68leadsc.ooiiiiiiiiiiiiiiinins NO330............ 1581
Plastic Quad Flat Package ’
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10x10x1.75mm SOT307-2 1582
44-lead quad flat-pack; Plasticoeeiiiiii e SOT205AG 1583
LQFP44: plastic low profile quad flat package; 44 leads; body 10 x 10x 1.4mmoooevnnns SOT389-1 1584
QFP64: plastic quad flat package; 64 leads (lead length 2.35mm); body 14 x 20 x 2.75mm SOT208-1 1585
QFP64: plastic quad flat package; 64 leads (lead length 1.95mm); body 14 x 20 x 2.7mm;
high stand-off REIGNT oie e SOT319-1 1586
QFP80: plastic quad flat package; 80 leads (lead length 1.95mm); body 14 x 20 x 2.7 mm;
high stand-off heightoooeii i SOT318-1 ...t 1587
Ceramic Quad Flat Package
CQFP80: ceramic quad flat package; 8018adsc.vuiiiiuiniiiieiiiiiiie e SOT351-1 1588
Plastic Small Outline Package
S08: plastic small outline package; 8 leads; body width 8.9mmcoovevnniienonns SOT96-1 1589
S028: plastic small outline package; 28 leads; body width 7.5mmcoveeniiiienenn. SOT136-1 1590
VS040: plastic very small outline package; 40leadso SOT158-1 1591
VSO56: plastic very small outline package; 56 leadst SOT190-1 1592
Plastic Shrink Small Outline Package
SSOP24: plastic shrink small outline package; 24 leads; body width 5.3mm ... SOT340-1 1593
SSOP28: plastic shrink small outline package; 28 leads; body width 5.3mmennnnnn. SOT341-1 1594
42-Pin Plastic SSOP (Shrink Small Outline Package) Dual In-Line (D/K) Package 1680cnn 1595
Appendix A — Data Handbook SYStEMoitiit it 1596
Appendix B — Pin CONfIgUIAtioNSttt 1598

March 1995 12

Philips Semiconductors P rod uct Stat us

80C51-Based
8-Bit Microcontrollers

DEFINITIONS
It?eat:taifig?iec}n Product Status Definition
Objective Specification Formative or In Design This data sheet contains the design target or goal specifications for
product development. Specifications may change in any manner
without notice.

Preliminary Specification | Preproduction Product This data sheet ins preliminary data, and y data
will be published at a later date. Philips Semiconductors reserves the
right to make changes at any time without notice in order to improve
design and supply the best possible product.

Product Specification Full Production This data sheet contains Final Specifications. Philips

Semiconductors reserves the right to make changes at any time
without notice, in order to improve design and supply the best
possible product.

March 1995

13

Philips Semiconductors

80C51 microcontroller family features guide

”

Part Numb — WMemory Counter Vo Serial External Comments/
(ROMless) ROM | EPRM | RAM Timers Port | Interfaces | Interrupt Special Features
P 83C750 1K 64 T(16-oi) | 2-3/8 - 2 20 MHz, Lowest cost, SSOP
P 87C750 1K 64 1 (16-bit) 2-3/8 - 2 40 MHz, Lowest cost, SSOP
3 83C748 2K 64 T(i6-bi) | 2-3/8 B 2 8XC751 wio I°C, SSOP |
P 87C748 2K 64 1 (16-bit) 2-3/8 - 2 8XC751 wio 12C, SSOP
S 83C751 2K 64 1 (16-bit) 2-3/8 12C (bit) 2 24-pin Skinny DIP, SSOP
S 87C751 2K 64 1 (16-bit) 2-3/8 12C (bit) 2 24-pin Skinny DIP, SSOP
P 83C749 2K 64 1 (16-bit) 2-5/8 - 2 8XC752 wio 12C, SSOP
P 87C749 2K 64 1 (16-bit) 2-5/8 - 2 8XC752 w/o 12C, SSOP
s 83C752 2K 64 1 (16-bit) 2-5/8 12C (bit) 2 5 Channel 8-bit A/D, PWM Output, SSOP
S 87C752 2K 64 1 (16-bit) 2-5/8 12C (bit) 2 5 Channel 8-bit A/D, PWM Output, SSOP
MAX 8051AH (8031AH) 4K 128 2 4 UART 2 NMOS
sC 80C51 (80C31) 4K 128 2 4 UART 2 CMOS (Sunnyvale)
PCx 80C51 (80C31) 4K 128 2 4 UART 2 CMOS (Hamburg)
sC 87C51 4K 128 2 4 UART 2 CMOS
80CL51 (80CL31) 4K 128 2 4 UART 10 Low Voltage (1.8V to 6V), Low Power
83CL410 (80CL410) 4K 128 2 4 12C 10 Low Voltage (1.8V to 6V), Low Power
sC 83C451 (80C451) 4K 128 2 7 UART 2 Extended I/0, Processor Bus Interface
sC 87C451 4K 128 2 7 UART 2 Extended I/0, Processor Bus Interface
P 83C550 (80C550) 4K 128 2 + Watchdog 4 UART 2 8 Channel 8-bit A/D
P 87C550 4K 128 2 + Watchdog 4 UART 2 8 Channel 8-bit A/D
P 83C851 (80C851) 4K 128 2 4 UART 2 2568 EEPROM, 80C51 Pin compatible
P 83C542 4K 256 2 1 12c 2 ACCESS.bus, replaces 8042 KB controller
P 87C542 4K 256 2 1 12C 2 See Above
P 83C852 6K 256 2 (16-bit) 2/8 - 1 Smartcard Controller with 2K EEPROM (Data,
Code) Cryptographic Calc Unit
P 83CL580 (80CL580) 6K 256 3 + Watchdog 5 UART, I2C 9 4 Channel 8-bit A/D, PWM Output,
Low Voltage (2.5V to 6V), Low Power
MAX 8052AH (8032AH) 8K 256 3 4 UART 2 NMOS
P 80C52 (80C32) 8K 256 3 4 UART 2 80C51 Pin Compatible
P 87C52 8K 256 3 4 UART 2 (see above)
P 83C652 (80C652) 8K 256 2 4 UART, I2C 2 80C51 Pin Compatible
S 87C652 8K 256 2 4 UART, I12C 2 (see above)
P 83C453 (80C453) 8K 256 2 7 UART 2 Extended I/O, Processor Bus interface
P 87C453 8K 256 2 7 UART 2 Extended I/O, Processor Bus Interface
s 83C51FA (80C51FA) 8K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
s 87C51FA 8K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
S 83L51FA 8K 256 3+PCA 4 UART 2 Low Voltage 83C51FA (3V @ 20MHz)
S 87L51FA 8K 256 3+PCA 4 UART 2 Low Voltage OTP 87C51FA (3V @ 20MHz)
P 83C575 (80C575) 8K 256 3+ PCA+ 4 UART 2 High Reliability, with Low Voltage Detect,
Watchdog OSC Fail Detect, Analog Comparators, PCA
P 87C575 8K 256 (see above) UART (see above)
83C576 (80C576) 8K 256 3+ PCA+ UART Same as 8XC575 plus UPI and 10-bit A/D
Watchdog
P 87C576 8K 256 (see above) UART (see above)
PC 83C562 (80C562) 8K 256 3 + Watchdog UART 8 Channel 8-bit A/D, 2 PWM Outputs,
Capture/Compare Timer
PCx 83C552 (80C552) 8K 256 3 + Watchdog 6 UART, 12C 2 8 Channel 10-bit A/D, 2 PWM Outputs,
Capture/Compare Timer
S 87C552 8K 256 3 + Watchdog 6 UART, 12C 2 (see above)

Notes: Part number prefixes are noted in the first column.

All combinations of part type, speed, temperature and package may not be available.

March 1995

Philips Semiconductors

80C51 microcontroller family features guide

Part Number Program | Clock Freq Temperature Ranges (°C) Package
(ROMless) Security? (MHz) 0to70 |-40t0+85 |-55t0+125 [PDIP- [CDIP |PLCC |cCLCC |PQFP/Ssop
83C750 S N 3.510 40 X X N24 F24 A28 DB24 (0-70F)
87C750 s Y 351040 X X N24 F24 A28 DB24 (0-70F)
83C748 S N 351016 X X N24 A28 DB24 (0-70F)
87C748 S Y 3.5t016 X X N24 F24 A28 DB24 (0-70F)
83C751 s N 351016 X X N24 A28 DB24 (0-70F)
87C751 s Y 351016 X X N24 F24 A28 DB24 (0-70F)
83C749 S N 351016 X X N28 A28 DB28 (0-70F)
87C749 s Y 351016 X X N28 F28 A28 DB28 (0-70F)
83C752 s N 351016 X X X N28 A28 DB28 (0-70F)
87C752 s Y 351016 X 3 X N28 F28 A28 DB28 (0-70F)
B051AH (8031AH) | & N 351015 X X N40 Ada
SC80C51(80C31) | S Y 351033 X X X N40 A4 B44 (5)
PCx80C51 (80C31) | H N 121030 X X X P (40) WP (44) H (44)
87C51 s Y 351033 X X X N40 F40 Ad4 K44 B44 (5)
80CL51(80CL31) | z N 010 16 (1) X N40 (2) B44
83CL410(80CL410) | Z N Oto12 (1) X N40 (2) B44
83C451 (80C451) | S N 351016 X X X N64 (4) AG8
87C451) Y 351016 X X X N64 (4) AG8
83C550 (80C550) | S Y 351016 X X N40 A4
87C550 S Y 351016 X X —40t0+125 | N40 F40 A4 K44
83C851 (80C851) | H Y 121016 X X N40 Ad4 Ba4
83C542 s Y 351016 X A4
87C542 s Y 351016 X Ad4 K44
83C852 H Y 11012 X SO28
ordie
83CL580 (80CL580) | Z N 0to 12 (1) X @) B64
8052AH (8032AH) | S N 35015 X X N40 AdL
80C52 (80C32) S Y 351024 X X N40 Ad4 B44 (5)
87C52 s Y 351024 X X X N40 F40 A4 K44 B44 (5)
83C652 (80C652) | H Y 121024 X X —40t0+125 | N40 A4 B44
87C652 s Y 121020 X X X N40 F40 A44 Ka4
83C453 (80C453) | S N 351016 X X A68
87C453 S Y 351016 X X AG8
83C51FA (80C51FA) | S Y 351024 X X N40 Ad4 B44
87C51FA s Y 351024 X X N40 F40 Ad4 Ka4 B44
83L51FA S Y 351020 X X N40 Ad4 B44
87L51FA S Y 351020 X X N40 F40 Ad4 K44 B44
83C575 (80C575) | S Y 41016 X X N40 Ad4 B44
87C575 s Y 41016 X X N40 F40 Ad4 K44 B44
83C576 (80C576) | S Y 41016 X X N40 Ad4 B44
87C576 s Y 41016 X X N40 F40 A44 K44 B44
83C562 (80C562) | H N 121016 X X —4010 +125 A68 B8O
83C552 (80C552) | H N 121030 X X 4010 +125 A68 B8O
87C552 S Y 1210 16 X A68 K68

Notes: Production Centers are indicated in the second column: H — Hamburg, S - Sunnyvale, Z - Zurich.
All combinations of part type, speed, temperature and package may not be available.
1) Oscillator options start from 32kHz.

2) Also available in VSO40 package.

3) Also available in VSO56 Package.
4) Not recommended for new design.
5) Package available up to 16 MHz only.

March 1995

15

Philips Semiconductors

80C51 microcontroller family features guide

Part Numb — Memory Counter Vo Serial External Comments/
(ROMless) ROM [EPRM | RAM Timers Port Interfaces | Interrupt Special Features
P 83CL267 12K 256 3 25/8 °C - OStD, '8 PWM Outputs, 3 Software A/D Inputs,
8 LED Drivers
83CL268 12K 256 3 25/8 | I2C, 1M Baud - (see above)
P 83C055 16K 256 2 (16-bit) 3172 - 2 On-Screen Display, 9 PWM Outputs,
3 Software A/D Inputs
P 87C055 16K 256 2 (16-bit) 312 - 2 (see above)
P 80C54 16K 256 3 4 UART 2 Standard; 80C51 compatible
P 87C54 16K 256 3 4 UART 2 Standard; 87C51 compatible
P 83C504 (80C504) 16K 256 2 4 UART 2 "654 with Hardware Divide (no 12C)
P 87C504 16K 256 2 4 UART 2 (see above)
P 83C654 16K 256 2 4 UART, I2C 2 80C51 Pin Compatible
S 87C654 16K 256 2 4 UART, I2C 2 (see above)
P 83CE654 16K 256 2 4 UART, I2C 2 83C654 with Reduced EMI
P 83CL781 16K 256 3 4 UART, I2C 10 Low Voltage (1.8V to 6V), Low Power
P 83CL782 16K 256 3 4 UART, I2C 10 83CL781 Optimized 12MHz @ 3.1V
S 83C51FB 16K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
S 87C51FB 16K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
S 83L51FB 16K 256 3+PCA 4 UART 2 Low Voltage 83C51FB (3V @ 20MHz)
S 87L51FB 16K 256 3+PCA 4 UART 2 Low Voltage OTP 87C51FB (3V @ 20MHz)
P 83CL167 16K 256 3 61/8 12c OSD, 8 PWM Outputs,
4 Software A/D Inputs, 8 LED Drivers
P 83CL168 16K 256 3 61/8 | I2C, 1M Baud - (see above)
P 83C524 16K 512 3 + Watchdog 4 UART, I2C-bit 2 512 RAM
P 87C524 16K 512 3 + Watchdog 4 UART, I2C-bit 2 512 RAM
P 83C592 (80C592) 16K 512 3 + Watchdog 6 UART, CAN 6 CAN Bus Controller with 8 x 10-bit A/D,
2 PWM outputs, Capture/Compare Timer
P 87C592 16K 512 3 + Watchdog 6 UART, CAN 6 (see above)
P 80C58 32K 256 3 4 UART 2 Standard; 80C51 compatible
P 87C58 32K 256 3 4 UART 2 Standard; 87C51 compatible
S 83C51FC 32K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
S 87C51FC 32K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
P 83C528 (80C528) 32K 512 | 3+ Watchdog 4 UART, I2C-bit 2 Large Memory for High Level Languages
P 87C528 32K 512 3 + Watchdog 4 UART, I2C-bit 2 Large Memory for High Level Languages
P 83CE528 (80CE528) 32K 512 3 + Watchdog 4 UART, I2C-bit 2 8XC528 with Reduced EMI
P 83CE598 (80CE598) 32K 512 3 + Watchdog 6 UART, CAN 6 CAN Bus Controller, 8 x 10-bit A/D,
2 PWM outputs, WD, T2, Reduced EMI
P 87CE598 32K 512 3 + Watchdog 6 UART, CAN 6 (see above)
P 83CE558(80CES558) 32K 1024 | 3+ Watchdog 6 UART, I2C 2 Low EMI, 8 Channel 10-bit A/D,
2 PWM Outputs, Capture/Compare Timer
P 89CE558 32K 1024 | 3+ Watchdog 6 UART, I2C 2 32K FLash EEPROM plus above

Notes: Part number prefixes are noted in the first column.
All combinations of part type, speed, temperature and package may not be available.

March 1995

Philips Semiconductors

80C51 microcontroller family features guide

Part Number Program | Clock Freq Temperature Tianges (-C) Package
(ROMiess) Security? (MHz) 0to70 |-40to+85|-55to+125 | PDIP |CDIP |PLCC |CLCC |PQFP/SSOP
83CL267 T N 4.0t0 12 X R42 B64
83CL268 T N 401012 X R42 B64
83C055 S 3.510 20 X NB42
87C055 S N 351020 X NB42
80C54 S Y 351024 X X N40 Ad4 B44
87C54 S Y 351024 X X N40 F40 Ad44 K44 B44
83C504 (80C504) | S Y 1.21020 X X X N40 Ad4 B44
87C504 S Y 1.21020 X X X N40 F40 Ad4 K44 B44
83C654 (80C654) | H Y 121024 X X —40 to +125 m%, Ad44 B44
87C654 s Y 1.21020 X X X N40 F40 Ad4 Ka4 B44
83CE654 H Y 121016 X X B44
83CL781 z N Oto 12 (1) X N40 B44
83CL782 z N 0to12(1) 2510 +55 N40 B44
83C51FB S Y 351024 X X N40 Ad4 B44
87C51FB s Y 351024 X X N40 F40 Ad4 Ka4 B44
83L51FB S Y 351020 X N40 Ad4 B44
87L51FB S Y 351020 X N40 F40 Ad4 K44 B44
83CL167 T N 40t012 X R42 B64
83CL168 T N 401012 X R42 B64
83C524 H Y 121016 X X N40 Ad4 B44
87C524 S Y 351020 X X N40 F40 Ad4 K44 B44
83C592(80C592) | H Y 1.21016 X —40to +125 A68 K68
87C592 H Y 1.21016 X R42 A68 K68
80C58 S Y 351016 X X N40 Ad4 B44
87C58 s Y 351016 X X N40 F40 A44 K44 B44
83C51FC S Y 35t024 X X N40 Ad4 B44
87C51FC S Y 35t024 X X N40 F40 Ad4 K44 B44
83C528(80C528) | H Y 121016 X X —40to +125 N40 Ad4 B44
87C528 S Y 351020 X X N40 F40 Ad4 K44 B44
83CE528 (80CE528) | H Y 121016 X X —40t0 +125 A44 B44
83CE598 (80CE598) | H Y 121016 X —40to +125 B8O
87CE598 H Y 351016 X X B80
83CE558 80CE558 | H Y 121016 X X —4010 +125 B8O
89CE558 H Y 1.21016 X X Q80 B80

Notes: Production Centers are indicated in the second column: H — Hamburg, S — Sunnyvale, Z — Zurich.

All combinations of part type, speed, temperature and package may not be available.
1) Oscillator options start from 32kHz.

2) Also available in VSO40 package.

3) Also available in VSO56 Package.
4) Not recommended for new design.
5) Package available up to 16 MHz only.

March 1995

17

Philips Semiconductors

e
8051 microcontroller cross-reference guide
A —

INTEL SIEMENS OKI MATRA/HARRIS PHILIPS SEMICONDUCTORS
CMOS 80C31BH SAB 80C31 MSM80C31 80C31 PCB80C31BH-2/SC80C31BCC
80C31BH-1 80C31-1 PCBB0C31BH-3/SC80C31BCG
80C31BH-2 MSM80C31 80C3151 /SC80C31BCB
80C51BH SAB 80C51 MSM80C51 80C51 PCB80C51BH-2/SC80C51BCC
80C51BH-1 80C51-1 PCB80C51BH-3/SC80C51BCG
80C51BH-2 MSM8O0CS51 80C51 /SC80C51BCB
87C51 SC87C51CC
87C51-1 SC87C51CG
87C51-2 SC87C51CB
80C32 SABB0C32 P8OC32EB
80C32-1 80C32-25 P80C32GB
80C52 SAB80C52 P8OC52EB
80C52-1 80C52-25 P80C52GB
80C54 80C54
83C54 83C54
87C54 87C54
80C58 80C58
83C58 83C58
87C58 87C58
cMOS 83C51FA SB3C51FA
87C51FA S87C51FA
83C51FB S83C51FB
87C51FB S87C51FB
83C51FC S83C51FC
87C51FC S87C51FC

NOTES:
1. 80XXAHL = 80XX with low power standby pin; H = HMOS.

March 1995 18

Philips Semiconductors

L,

Low power / low voltage microcontroller family
b

80C51 LOW POWER FAMILY

Type Available ROM RAM 170 12c UART Features Package
80CL51 Yes 4k 128 32 No Yes Low Voltage 80C51 40-Pin Dual In-Line
40-Pin Very Small Outline
44-Pin Quad Flat Pack
80CL31 Yes - 128 32 No Yes Low Voltage 80C31 40-Pin Dual In-Line
40-Pin Very Small Outline
44-Pin Quad Flat Pack
83CL410 Yes 4k 128 32 Yes No 80CL51 with 12C-bus 40-Pin Dual In-Line
40-Pin Very Small Outline
44-Pin Quad Flat Pack
80CL410 Yes - 128 32 Yes No 80CL51 with I12C-bus 40-Pin Dual In-Line
40-Pin Very Small Outline
44-Pin Quad Flat Pack
83CL580 Yes 6k 256 40 Yes Yes ADC, PWM, Watchdog, T2 | 50—Pin Very Small Outline
64-Pin Quad Flat Pack
80CL580 Yes - 256 40 Yes Yes ADC, PWM, Watchdog, T2 | 50-Pin Very Small Outline
64-Pin Quad Flat Pack
83CL781 Yes 16k 256 32 Yes Yes Low voltage 83C654, T2 40-Pin Dual In-Line
44-Pin Quad Flat Pack
83CL782 Yes 16k 256 32 Yes Yes Fast 83CL781: 12MHz/3V 40-Pin Dual In-Line
44-Pin Quad Flat Pack
85CL000 Yes - 256 32 Yes Yes For SW development Piggyback
85CL580 Yes - 256 40 Yes Yes For SW development Piggyback
85CL782 Yes - 256 32 Yes Yes For SW development Piggyback
LOW VOLTAGE DEVICES
Type Available ROM RAM /0 12c UART Features Package
83L51FA Yes 8k 256 32 No Yes PCA, Enhanced UART 40-Pin Dual In-Line
3.0Vto 4.5V 44-Pin PLCC
44-Pin Quad Flat Pack
87L51FA Yes 8k 256 32 No Yes PCA, Enhanced UART 40-Pin Dual In-Line
EPROM/ 3.0Vto 4.5V 44-Pin PLCC
oTP 44-Pin Quad Flat Pack
83L51FB Yes 16k 256 32 No Yes PCA, Enhanced UART 40-Pin Dual In-Line
3.0Vto 4.5V 44-Pin PLCC
44-Pin Quad Flat Pack
83L51FB Yes 16k 256 32 No Yes PCA, Enhanced UART 40-Pin Dual In-Line
EPROM/ 3.0Vto 4.5V 44-Pin PLCC
oTP 44-Pin Quad Flat Pack
March 1995 19

Philips Semiconductors

80C51 microcontroller development system support

#

DEVELOPMENT SYSTEM CONTACTS

COMPANY

ADDRESS

TELEPHONE

Ashling Microsystems Limited

Plassey Technological Park
Limerick, Ireland

Eastern Systems Inc.
160 East Main Street
Westboro, MA 01581

(353) 61 334 466

(508) 366-3220

BSO Tasking

Norfolk Place
333 EIm Street
Dedham, MA 02026-4530

(800) 458-8276

Ceibo Ltd.

105 Gleason Rd.
Lexington, MA 02173

Merkazim Building, Industrial Zone
P.O. Box 2106
Herzelia 46120, ISRAEL

(617) 863-9927

972-52-555387

Lauterbach Datentechnik GmbH

Fichtenstrasse 27
85649 Hofolding
Germany

945 Concord Street
Framingham, MA 01701

49 8104 894 328

(508) 620-4521

MetaLink Corp.

325 E. Elliot Road, Suite 23
Chandler, AZ 85225

(602) 926-0797

Nohau Corp.

51 E. Campbell Ave.
Campbell, CA 95008-2053

(408) 866-1820

Philips Semiconductors

Corporate Centre
Building BAE-2
P.O.Box 218

5600 MD Eindhoven
The Netherlands

31-40-724223

SIGNUM Systems

171 E. Thousand Oaks Blvd.,
#202
Thousand Oaks, CA 91360

(805) 371-4608

EPROM PROGRAMMING SUPPORT

CONTACTS

Advin Systems
1050-L East Duane Ave.
Sunnyvale, CA 94086

Logical Devices, Inc.
1201 Northwest 65th Place
Ft. Lauderdale, FL 33309

North Valley Products
P.O. Box 32899
San Jose, CA 95152

Houston, TX 77043

(800) 225-2102, (713) 461-9430

Syracuse, NY 13217-6184
(315) 478-0722

(408) 736-2503 (305) 974-0967 (408) 929-5345
BP Microsystems Logical Systems Strebor Data Communications
10681 Haddington #190 P. O. Box 6184 1008 N. Nob Hill

American Fork, UT 84003
(801) 756-3605

Data 1/O Corp.

Needham’s Electronics

10525 Willows Road N.E. 4535 Orange Grove Ave.
P.O. Box 97046 Sacramento, CA 95841
Redmond, WA 98073-9746 (916) 924-8037
(206) 881-6444

March 1995 20

Philips Semiconductors

80C51 microcontroller development system support

SOFTWARE SUPPORT CONTACTS

San Jose, CA 95129

COMPANY ADDRESS TELEPHONE
Archimedes Software, Inc. 2159 Union St. (415) 567-4010
San Francisco, CA 94123
BSO/Tasking Tasking Software BV 31-33-55-85-84 (Telephone)
P.O. Box 899 31-33-55-00-33 (Fax)
3800 AW Amersfoort
The Netherlands
BSO Tasking (617) 894-7800 (Telephone)
128 Technology Center (617) 894-0551 (Fax)
P.O. Box 9164 (710) 324-0760 (Telex)
Waltham, MA 02254-9164 (800) 458-8276 (Toll Free)
Franklin Software, Inc. 888 Saratoga Ave. #2 (408) 296-8051

Keil Software Bretonischer Ring 15 49-89-46-50-57 (Telephone)
85630 Grasbrunn 49-89-46-81-62 (Fax)
Germany
NOTE:

For more information on Development Support, see Section 9, Vol. 2, 1C20.

March 1995

21

Philips Semiconductors

8-bit microcontroller demonstration and
evaluation boards

PRODUCT DESCRIPTION

OM4151, S87C00K 12C demonstration board based on 80C51 derivatives

OM4238, P8051DB 8051 family demonstration board

OM4128 8XC552 evaluation board PEB552

OM4130, PCAN-EVAL CAN controller evaluation board

OM4239 8XC592 evaluation board PEB592

OM4240 8XCE598 evaluation board PEB598

OM4241 8XCE598 evaluation board PDB598

OM4160, SM68070 68070 and 66470 demonstration and evaluation board Microcore 1

OM4160/2 68070 evaluation board Microcore 2

OM4162 9XCE201 evaluation board Microcore 4

OM4280, P83C852DEM 83C852 demonstration kit

OM4281 1 83C852 software evaluation kit

P8051DB 80C51 family development board

OM4717 83CL410 solar powered demonstration board

OM5005, PSBOCLEVAL 80CL51 evaluation board

DS750 8XC750 microcontroller in-circuit emulation development tool
NOTE:

1. The OM4281 is now available only from Ashling Microsystems Ltd. as type SCPC4281.

March 1995 22

Philips Semiconductors

L
Microcontroller bulletin boards

To better serve our customers, Philips maintains two microcontroller bulletin boards. These computer bulletin board
systems feature microcontroller newsletters, application and demonstration programs for download, and the ability
to send messages to microcontroller application engineers.

The telephone numbers are:

North American Bulletin Board
300/1200/2400 baud 8-N-1
(800) 451-6644 (in the U.S.)
or
(408) 991-2406

European Bulletin Board
MAX 14.400 baud
Standards V32/V42/V42.bis/HST
+31 40 721102

European Application Help Desk
+31 40 722749
9a.m. — 16p.m. CET (Central European Time)

Sunnyvale ROMcode Bulletin Board

We also have a ROM code bulletin board through which you can submit ROM codes. This is a closed bulletin
board for security reasons. To get an ID, contact your local sales office. The system can be accessed with a 2400,
1200, or 300 baud modem, and is available 24 hours a day.

The telephone number is:

(408) 991-3459

The following application note files are available on the Philips BBS:

App Note BBS file name App Note BBS file name Articles:

AN417 PRN256K.ZIP AN434 12CPCKB.ZIP Add text overlay to any video display
AN420 INTRUPTS.ASM AN435 IC_0s.zIP CCl6.ZIP, MTV.ZIP
AN422 12CAPP.ZIP AN438 12C528.EXE

AN423 RS751.ASM AN439 BATTCHRG.C

AN424 WARMBOOT.ZIP AN440 BOOTSTRP.ZIP

AN425 12C8584.ZIP AN443 MAZEMOUS.ZIP

AN427 TIMERIZIP AN445 ABMOUSE.ZIP

AN428 DEMO752.ASM AN446 DUPUART.ZIP

AN429 AN429.ZIP AN447 AUTOBAUD.ZIP

AN430 MM751.ZIP EIE/AN91007 MM751B.ZIP

AN433 SLV751.ZIP EIE/AN91009 EEPRMS851.ZIP

March 1995 23

Philips Semiconductors

Philips Fax-On-Demand System

—

What’s the nu_mber?
1-800-282-2000

What is it?

The Fax-On-Demand system is a computer facsimile system
that allows customers to receive selected documents by Fax
automatically.

Philips Fax-On-Demand system is now set up to fax selected
datasheets as customers request them, 24 hours per day, 7 days
per week.

How does it work?

Each time the system receives a call, the voice card plays the
pre-recorded messages, and waits for the caller’s responses.
Based on the caller’s responses, the system will find and fax the
appropriate document to the caller’s fax machine.

To receive a document, the user must know the document
number. This number can be obtained by asking for an index of
available documents the first time that he/she calls the system.

How is it set up?
The Philips Fax-On-Demand system has six indexes (so far):

Communication

Audio & Video (in progress)
Microcontrollers

Logic

Linear

PLD

QN AW -

Philips
Semiconductors

FAX ON DEMAND
1-800-282-2000

So far, the system has 600 data sheets. We expect this number to rise to 800 data sheets very soon and keep increasing every
quarter. As you know, it will take approximately one minute to fax one page. This wouldn’t be that bad if the number of pages
is less than ten. But if the document is 37 pages long, be ready for a long transmission!!!

Philips Fax-On-Demand number is 1-800-282-2000, try it!

The following listing of products are those for which documents are available via “Fax-On-Demand” for the communications

category.

Coming soon: Fax-On-Demand for our European-produced products.

Who do I contact if I have any questions about Fax-On-Demand?

Hamid Mohammadi
Phone: (408) 991-4895
Technical Support Center

January 1995 24

Philips Semiconductors

“

CMOS and NMOS 8-bit microcontroller family

\

80C51 FAMILY CMOS

TYPE ROMW/ RAM | SPEED | PACKAGE FUNCTIONS REMARKS PHILIPS | THIRD PARTY
EPROM (MHz) PROBES PODs
80C31 0 128 33 UART, 2 timers 87C51:QFP OM1092 8052PC(M)
80C51 4k ROM 128 33 DIL40, LCC44 package upto | + OM1097
87C51 4k EPROM | 128 33 QFP44 16MHz (16MHz)

OM4120S | POD-C51B(N)
83C51FA 8k ROM 256 24 DIL40, LCC44 | Enhanced UART, 3 timers, PDS51FBSD | 8351FX(M)
87C51FA | 8k EPROM | 256 24 QFP44 PCA POD-C51FX(N)
83L51FA 8k ROM 256 20 DIL40, LCC44 | Enhanced UART, 3 timers, 3V to 4.5V POD-L51P(N)
87L51FA | 8k EPROM | 256 20 QFP44 PCA operation
87C51FB 16k ROM 256 24 DIL40, LCC44 | Enhanced UART, 3 timers, PDS51FBSD | 8351FX(M)
83C51FB | 16k EPROM | 256 24 QFP44 PCA] POD-C51FX(N)
87L51FB 16k ROM | 256 20 DIL40, LCC44 | Enhanced UART, 3 timers, 3V to 4.5V POD-L51P(N)
83L51FB | 16k EPROM | 256 20 QFP44 PCA operation
87C51FC | 32k ROM | 256 24 DIL40, LCC44 | Enhanced UART, 3 timers, 8351FX(M)
83C51FC | 32k EPROM | 256 24 QFP44 PCA POD-C51FX(N)
80C32 0 256 24 DIL40, LCC44 | UART, 3 timers OM1079 8052PC(M)
80C52 8k ROM 256 24 QFP44 OM5012 POD-C32(N)
87C52 8k EPROM | 256 24
80C54 16k ROM | 256 24 DIL40, LCC44 | UART, 3 timers OM1079 8052PC(M)
87C54 16k EPROM | 256 24 QFP44 OM5012 POD-C32(N)
80C58 32k ROM | 256 24 DIL40, LCC44 | UART, 3 timers OM1079 8052PC(M)
87C58 32k EPROM | 256 24 QFP44 OM5012 POD-C32(N)
80C451 0 128 16 UART, 2 timers OM4123 83C451PC(M)
83C451 4k ROM 128 16 DIP64/LCC68 - | Extended I/0 POD-C451B(N)
87C451 4k EPROM | 128 16
83C504 16K ROM | 256 24 DIL40, LCC44 | 24 by 8 divide,
87C504 16K EPROM | 256 24 QFP44 2 timers
87C524 16K EPROM | 512 20 DIL40/LCC44 | UART, 3 timers OM4111 + 83528PC(M)

Watchdog timer OM4110 + | POD-C528(N)
83C524 16k ROM 512 12 QFP44 Bit 12C OM4120S
83C528 32k ROM | 512 16 DIL40/LCC44 | UART, 3 timers OM4111 + | 83C528PC(M)
87C528 | 32k EPROM | 512 | 16,20 |(QFP44) Watchdog timer OM4110 +
Bit 12C OM4120S | POD-C528(N)
83CE528 32kROM 512 16 CE ONLY QFP
80C550 0 128 16 LCC44 UART, 2 timers OM5055 + | 83550(M)
83C550 4k ROM 128 16 DiL40 8 8-bit ADC inputs, watchdog OM4110 POD-C550(N)
87C550 4k EPROM | 128 16 timer
80C552 0 256 | 16,24 | LCC68/QFP80 | UART, 2 timers OM1092 + | 83C552PC(M)
83C552 8k ROM 256 | 16,24 Timer with compare and cap- OM1095 + | POD-C552B(N)
87C552 8k EPROM | 256 16 ture, 2 PWM outputs, 8 10-bit OM41208
ADC inputs, Byte 12C OM4128
83CE558 | 32K ROM 1K 16 QFP80 As 8xC552 with 89C: Q4-92 OM4247
89CES558 | 32K FLASH | 1K 16 PLL-oscillator 83C: Q2/3-93
80CE558 0 Auto scan ADC
80C562 0 256 16 LCC68/QFP80 | UART, 2 timers OM1092 + | 83C552PC(M)
83C562 8k ROM 256 16 Timer with compare and OM1095 +
capture, 2 PWM outputs, 8 OM4120S
8-bit ADC inputs POD-C552B(N)
80C575 0 256 16 DIL40, LCC44 |3 timers 1 POD-C575(N)
83C575 8k 256 16 QFP44 Enh. UART, PCA, 4 analog
87C575 8k EPROM | 256 16 comparators
83C576 8k ROM 256 16 DIL40, LCC44, | 10-bit A/D, 3 timers, PCA,
87C576 8k EPROM | 256 16 SDIL42 Watchdog timer
80C592 0 512 16 LCC68/QFP80 | 8XC552 + CAN interface OM4110 + POD-592(N)
83C592 16k ROM | 512 16 OM4112 +
87C592 16k EPROM | 512 16 OM41208
M = Metlink
N = Nohau
March 1995 25

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

80C51 FAMILY CMOS (Continued)

March 1995

26

TYPE ROM/ RAM | SPEED | PACKAGE FUNCTIONS REMARKS PHILIPS | THIRD PARTY
EPROM (MHz) PROBES PODs
87CE598 | 32K ROM 512 16 QFP80 8xC552 + CAN 87CE:
87CE598 | 32K EPROM 512 16 interface. prod: Q2’94
80CE598 | 0 512 16 No I2C
80C652 0 256 | 16,24 | DIL40/LCC44 | UART, 2 timers OM1092 + | 83652PC(M)
| 83C652 8k ROM 256 | 16,24 | QFP44 Byte I12C OM1096 + | POD-C51B(N)
87C652 8k EPROM 256 | 16,20 OM4120S
83C654 16k ROM 256 16,24 | DIL40/LCC44 | UART, 2 timers OM1092 + | 83654(M)
87C654 16k EPROM 256 | 16,20 | QFP44 Byte I2C OM1096 +
OM4120S | POD-C51B(N)
83CE654 16k ROM 256 16 QFP44 UART, 2 timers 83C654 with OM1092 + | 83654(M)
80CE654 0 256 16 Byte I2C Electromagnetic § OM1096 +
Compatibility OM4120S | POD-C51B(N)
improvements
83C750 1K ROM 64 40 SDIP24 skinny | 1 timer OM1094 83751PC(M)
87C750 1KEPROM 64 40
83C751 2k ROM 64 16 DIP24 skinny 1 timer OM1094P | 83751PC(M)
83C748 LCC28 Bit 12C (8XC751 only) POD-C751(N)
DIP24 skinny
87C751 2k EPROM 64 16
87c748
83C752 2k ROM 64 16 DIP28,LCC28 |1 timer, OM5072 83752A(M)
83C749 PWM output,
5 8-bit ADC inputs, Bit I2C
87C752 2k EPROM 64 16 DIP 28, LCC28 | (8XC752 only) POD-C752(N)
87¢752
80C851 0 128 16 DIL40/LCC44 | UART, 2 timers OM1092 + | 80851PC(M)
83C851 4k ROM 128 16 QFP44 256 byte OM4120S | POD-C51(N)
83C852 6k ROM 256 6 2k byte
EEPROM
smart card hardware CU
83C055 16k ROM 256 12 DIP42 Shrunk | As 8XC053 In dev. OM5054
87C055 16k EPROM 256 12 DIP42 Shrunk
* The following microcontollers have no external memory access: 8XC751, 8XC752, 8XC053, 87C054, 83C852.
M = Metlink
N = Nohau

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

80CLXXX FAMILY CMOS

TYPE

ROM

RAM

SPEED
(MHz)

PACKAGE

FUNCTIONS

REMARKS

PROBE
SDS

REMARKS

85CL000

0

256

12

Piggyback

Piggyback
CL410, CL411,

CL51, P80C51

85CL580

256

12

Piggyback

Piggyback
CL580

85CL781

256

12

Piggyback

Piggyback
CL781, CL782,
CL52

80CL51
80CL31

4K

128
128

16
16

DIL40
V8040

2 timers, UART

OM1079

QFP: OM5020

83CL410
80CL410

4k

128
128

12
12

DIL40
VS040

2 timers
Byte I12C

OM1079

QFP: OM5020

83CL580

6k

256

16

QFP64/
V8056

3timers, UART
Watchdog timer
Byte 1°C,
1 PWM
4*8 bit ADC

OM1079 +
OM5004

OM1079: Probe
base
OM5004: Probe
adap

83CL781
83CL782

16k
16k

256
256

12e

4.5V

12e
3V

DIL40
QFP44

3timers, UART
Byte I12C

OM1079 +
OM5004 +
tbd

OM1079: Probe
base
OM5004: Probe
adap

83CL167
83CL267

16K
12K

256
256

12
12

SDIL64
QFP64

3timers
1-14 bit PWM
4-6 bit PWM
4-7 bit PWM
4*4 bit ADC
Byte I12C
160 char OSD
126 char fonts
4 char sizes
Shadow modes
ODS PLL osc.
10MHz
Blinking

In Dev

OM4840
OM1079

83CL168
83CL268

16K
12K

256
256

12
12

SDIL64
QFP64

3timers
1-14 bit PWM
4-6 bit PWM
4-7 bit PWM
4*4 bit ADC
RC
preprocessor
Byte I12C
3 wire serial /O
160 char OSD
126 char fonts
4 char sizes
Shadow modes
ODS PLL osc.
10MHz
Blinking

In Dev

OM4840 +
OM1079

March 1995

27

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

8051 FAMILY NMOS

March 1995

TYPE ROM RAM | SPEED PACKAGE FUNCTIONS REMARKS PROBE THIRD PARTY
(MHz) SDS EMULATOR
8051 4k 128 15 DIL40/PLCC44 | UART, 2 timers OM1092 + 8052PC(M)
8031 0 128 15 DIL40/PLCC44 OM1097 + OPD-C51B(N)
OM4120S
8052 8k 256 15 DIL40/PLCC44 | UART, 3 timers OM4111 + 8052PC(M)
8032 0 256 15 DIL40/PLCC44 | UART, 3 timers OM4110 + OPD-C51B(N)
OM4120S
28

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

8400 FAMILY CMOS
TYPE ROM RAM | SPEED | PACKAGE FUNCTIONS REMARKS PROBE REMARKS
(MHz) SDS
84C21A 2k 64 10 DIL28/S0O28 20 1/0 lines OM1083 OM1025
84C41A 4k 128 10 DIL28/S028 8-bit timer (LSDs)
84C81A 8k 256 10 DIL28/S0O28 Byte I12C
84C22A 2k 64 10 DIL20/S020 13 1/0 lines OM1083 + OM1025
84C42A 4k 64 10 DIL20/SO20 8-bit timer Adapter_1 (LSDS)
84C12A 1k 64 16 DIL20/SO20
DIL20/SO20
84C00B 0 256 10 28 pins 20 /O lines Piggyback OM1080
8-bit timer
Byte 12C
84C00T 256 10 VSO0-56 ROMiless OM1080
84C121 1k 64 10 DIL20/S020 13 1/Olines OM1073 OM1025(LEDS)
2 8-bit timers
8 bytes
84C121B 0 64 10 EEPROM Piggyback OM1027
84C122A 1k 32 10 A: SO20 Controller for OM4830
84C122B B: S024 remote control
84C422A 4K 32 C: 8028 A: 121/0
84C422B B:161/0
84C822A 8K 32 C:201/0
84C822B
84C822C
84C230 21 64 10 DIL40/VSO40 | 121/Olines OoM1072
8-bit timer
16*4 LCD drive
84C430 4k 128 10 QFP64 24 1/O lines OM1072
8-bit timer
Byte 12C
24*4 LCD drive
84C430BH 0 128 10 Piggyback for C230
and C430
84C633 6k 256 16 VS056 28 1/0 lines OM1086
8-bit timer
16-bit up/down
counter
16-bit timer
with compare
and capture
84C633B 0 256 16 16*4 LCD drive
84C440 4k 128 10 DIP42 shrunk | RC: 29 I/O lines 2C, RC OM1074 For emulation of
84C441 4k 128 10 LC: 28 1/O lines 12C, LC LC versions,
84C443 4k 128 10 8-bit timer RC use OM1074 +
84C444 4k 128 10 1 14-bit PWM LC adapter_3 +
84C640 6k 128 10 5 6-bit PWM 12C, RC 2 adapter_5
84C641 6k 128 10 3-bit ADC 2C, LC
84C643 6k 128 10 OSD 2L-16 RC
84C644 6k 128 10 LC
84C840 8k 192 10 I2C, RC
84C841 8k 192 10 2C, LC
84C843 8k 192 10 RC Baud for LCDS
84C844 8k 192 10 LC 0OM4831
March 1995 29

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

8400 FAMILY CMOS (Continued)

TYPE ROM RAM | SPEED | PACKAGE FUNCTIONS REMARKS PROBE REMARKS
(MHz) SDS
84C646 6k 192 10 DIP42 shrunk | 30 I/O lines 12C, RC 0OMm4829 + 0OM4833 for
84C846 8k 192 10 DOS clock = 2C, RC 0OM4832 LCD584
PLL
8 bit timer
1-14 bit PWM
4-6 bit PWM
4-7 bit PWM
3-4 bit ADC
DOS: 64 disp.
RAM
62 char. fonts
Char. blinking
Shadow modes
8 foreground
colors/char.
8 background
colors/word
DOS: clock:
8..20MHz
84C85 8k 256 10 DIL40/VSO40 |32 1/O lines OM1070
8-bit timer
Byte I12C
84C85B 0 256 10 Piggyback for C85
84C853 8k 256 16 DIL40/VSO40 | 33 I/O lines OoMm1081
8-bit timer
16-bit up/down
counter
16-bit timer with
compare and
capture
84C853B 0 256 16 Piggyback for C853
84C270 2k 128 10 DIL40/VSO40 |8 1/O lines oMm1077
84C470 4k 128 10 DIL40/VSO40 | 168 capture
keyboard matrix
8-bit timer
84C270B 0 128 10 Piggyback for C270
84C470B 0 128 10 470 also Piggyback for C470
handles mech.
keys
84C271 2k 128 10 DIL40 81/0 lines OM1078
16*8 mech.
keyboard matrix
8-bit timer
8400 FAMILY NMOS
TYPE ROM RAM | SPEED | PACKAGE FUNCTIONS REMARKS EMULATOR REMARKS
(MHz) TOOLS
8411 1k 64 6 DIL28/S028 20 1/O lines OM1025
8421 2k 64 6 DIL28/SO28 8-bit timer (LCDS) +
8441 4k 128 6 DIL28/S028 Byte 12C OM1026
8461 6k 128 6 DIL28/S028
8422 2k 64 6 DIL20 131/0 lines
8442 4k 128 6 DIL20 8-bit timer
Bit12C
8401B 0 128 6 28-pin Piggyback for 84X1

March 1995 30

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

3300 FAMILY CMOS

TYPE

ROM

RAM

SPEED
(MHz)

PACKAGE

FUNCTIONS

REMARKS

PROBE
SDS

REMARKS

3315A

1.5k

160

10

DIL28/S028

20 I/0 lines
8-bit timer
Vpp > 1.8V

OM1083

OM1025(LCDS)

3343

3k

224

10

DIL28/S0O28

201/Olines
8-bit timer
VDD >1.8V
Byte I12C

OM1083

OM1025(LCDS)

3344A

2k

224

3.58

DIL28/S028

20 1/0 lines
8-bit timer
DTMF generator

OM1071

OM1025(LCDS)
+OM1028

3346A

4k

128

DIL28/S0O28

20 1/0 lines

8-bit timer

Byte I12C

256 bytes EEPROM
VDD <18V

OM1076

3347

64

3.58

DIL20/S020

121/0 lines
8-bit timer
DTMF generator

OM1071 +
Adapter_2

OM1025(LCDS)
+0OM1028

3348A

8k

256

10

DIL28/S028

20 1/O lines
8-bit timer
Byte 12C
VDD <1 8V

OM1083

OM1025(LCDS)

3349A

4k

224

3.58

DIL28/S0O28

20 I/0 lines
8-bit timer
DTMF generator

OoM1071

OM1025(LCDS)
+OM1028

3350A

8k

128

3.58

VS064

30 I/O lines

8-bit timer

DTMF generator
256 bytes EEPROM

3351A

2k

64

3.58

DIL28/S0O28

20 1/0 lines

8-bit timer

DTMF generator
128 bytes EEPROM

OM5000

3352A

6k

128

3.58

DIL28/S0O28

20 1/0 lines

8-bit timer

DTMF generator
128 byte EEPROM

OM5000

3353A

6k

128

16

DIL28/S028

20 1/0 lines

8-bit timer

DTMF generator
Ringer out

128 bytes EEPROM

March 92

OM5000

3354A

8k

256

16

QFP64

36 1/0 lines

8-bit timer

DTMF generator
Ringer out

256 bytes EEPROM

June '92

OM4829 +
OM5003

OM4829: Probe
base

8755A

128

DIL28/S028

8k OTP

20 1/0 lines

8-bit timer

DTMF generator
Melody output

128 bytes EEPROM

In Development

3301B

Piggyback for 3315,
3343, 3348

OM1083

3344B

Piggyback for 3344,
3347, 3349

OM1071

3346B

Piggyback for 3346

OM1076

March 1995

31

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

3300 FAMILY CMOS (Continued)

TYPE ROM |RAM |[SPEED| PACKAGE FUNCTIONS REMARKS PROBE REMARKS
(MHz) SDS
33508 Piggyback for 3350A | OM4829+
OM5003
33518 Piggyback for OM5000
3351A, 3352A,
3353A
33548 Piggyback for 3354A | OM4829+
OMS5010

March 1995 32

Philips Semiconductors

“

CMOS 16-bit microcontroller family

E

16-BIT CONTROLLERS (68000 ARCHITECTURE)

TYPE (EP)ROM | RAM | SPEED FUNCTIONS REMARKS PHILIPS TOOLS THIRD-PARTY
(MHz) TOOLS
68070 - - 17.5 | 2 DMA channels, OM4160 Microcore 1 TRACES32-ICE68070
MMU, UART, OM4160/2 Microcore 2 (Lauterbach)
16-bit timer, I2C, OM4161 (SBE68070)
68000 bus interface, OM4767/2 XRAY68070SBE
16Mb address range high level symbolic debugger
OM4222 68070DS development
system
OM4226 XRAY68070DS
high level symbolic debugger
93C101 34k 512 15 Derivative with low Not for new
power modes design
90CE201 16MB 16MB 24 UART, fast I12C, -25to OM4162 Microcore 4 TRACE32 -
external | external 3 timers (16 bit), +85°C (Lauterbach)
ROM RAM Watchdog timer.
68000 software
compatible, EMC,
QFP64
16-BIT CONTROLLERS (XA ARCHITECTURE)
TYPE (EP)ROM | RAM | SPEED FUNCTIONS REMARKS DEVELOPMENT TOOLS
(MHz)
XA-G1 8k 512 30 3 timers, watchdog, [-40to Nohau
2 UARTs +125°C Ceibo
MacCraiger Systems
XA-G2 16k 512 30 3 timers, watchdog, |40 to Nohau
2 UARTs +125°C Ceibo
MacCraiger Systems
XA-G3 32k 512 30 3 timers, watchdog, |—40 to Nohau
2 UARTs +125°C Ceibo
MacCraiger Systems
March 1995 33

Philips Semiconductors

Ordering Information

MICROCONTROLLER PRODUCTS

Example:

0 =ROMLESS

5 = Bond-Out (emulation)
3=ROM

7 = EPROM/OTP

9 = FEEPROM (FLASH)

Exceptions:
P80C32 = ROMless
P80C52 = ROM

This can be 2 or 3 digits

Speed
C=12MHz
E = 3.5MHz to 16MHz
F = 1.2MHz to 16MHz

P8 XCXXX EBPN

T—— Philips North America Package Code
A = Plastic Leaded Chip Carrier (PLCC)
B = Quad Flat Pack (QFP)
FA = Hermetic Cerdip (window)
KA = CerQuad (window)
N = Plastic Dual In-Line

Philips Package Code
A = Plastic Leaded Chip Carrier (PLCC)
B = Quad Flat Pack (QFP)
F = Hermetic Cerdip (window)
L = Cerquad (window)
P = Plastic Dual In-Line
Q = Ceramic Quad Flat Pack (window)

Temperature
B =0°C to +70°C
F =—40°C to +85°C
H =—-40°C to +125°C

L = 3V Low Voltage Operation

G = 20MHz
H = 32kHz to 12MHz
| = 24MHz
P = 40MHz
Example: PSD3XX - 12 B
T——-—- Package Code Window
A = Plastic Leaded Chip Carrier (PLCC) No*
Basic Part Number B = Plastic Quad Flat Pack (QFP) No**
KA = Ceramic Leaded Chip Carrier (CLCC) Yes™
— = 5V Standard Operation

Operating Temperature Range
Blank = Commercial: 0°C to +70°C
| = Industrial: —40°C to +85°C

Access Time
X10ns

* Surface Mount
** Socketing Recommended

Example:

0 = ROMLESS ‘——j

3=ROM
7 = EPROM/OTP

Exceptions:

SC80C31 = ROMless
SC80C51 = ROM

This can be 2 or 3 digits

SC8XCXXXBCCN 40

—l; Pin Count

Package Code
A = Plastic Leaded Chip Carrier (PLCC)
B = Quad Flat Pack (QFP)
F = Ceramic Dual In-Line
FA = Hermetic Cerdip (window)
KA= CerQuad (window)
L = Chip Carrier, Leaded
N = Plastic Dual In-Line

Speed
B=0.5t0 12MHz
C=12MHz
G = 16MHz
L = 20MHz
P =24MHz
Y = 33MHz

Temperature
C = Commercial 0°C to +70°C
A = Industrial -40°C to +85°C

Revision (optional)

March 1995

Philips Semiconductors

Ordering Information

Example: S 8 X CXXX -1 N 24

L Pin Count

Package Code
A Plastic Leaded Chip Carrier (PLCC)

B = Quad Flat Pack (QFP)
0= ROMLESS F i Ceramic Dual In-Line
- K = CerQuad
3=ROM N = Plastic Dual In-Line

7 = EPROM/OTP

Speed / Temperature Range
-1 =12MHz, 0°C to +70°C
-2 = 12MHz, -40°C to +85°C
-3 =0.5 to 12MHz, 0°C to +70°C
-4 = 16MHz, 0°C to +70°C
-5 = 16MHz, -40°C to +85°C
-6 = 12 or 16MHz, -55°C to +125°C
-7 = 20MHz, 0°C to +70°C
-8 = 20MHz, -40°C to +85°C
-A = 24MHz, 0°C to +70°C
-B = 24MHz, -40°C to +85°C

March 1995 35

Philips Semiconductors

Application Notes and
Development Tools for
80C51 Microcontrollers

Section 2
Inter-Integrated Circuit (I12C) Bus

CONTENTS
The 12C-bus and hOW O USE itottt e e e e 39
12C peripheral selection guide e eeiaaiee it ii et eaaieaa 58
82B715 2CbUS BXIBNBT ...ttt 60

Philips Semiconductors

“
The 12C-bus and how to use it

—

The I2C—bus and how to use it
(including specification)

1.0 THE I12C-BUS BENEFITS

DESIGNERS AND

MANUFACTURERS

In consumer electronics, telecommunications

and industrial electronics, there are often

many similarities between seemingly

unrelated designs. For example, nearly every

system includes:

® Some intelligent control, usually a
single-chip microcontroller

® General-purpose circuits like LCD drivers,
remote I/O ports, RAM, EEPROM, or data
converters

® Application-oriented circuits such as digital
tuning and signal processing circuits for
radio and video systems, or DTMF
generators for telephones with tone dialling

To exploit these similarities to the benefit of
both systems designers and equipment
manufacturers, as well as to maximize
hardware efficiency and circuit simplicity,
Philips developed a simple bidirectional
2-wire bus for efficient inter-IC control. This
bus is called the Inter IC or [2C-bus. At
present, Philips’ IC range includes more than
150 CMOS and bipolar I2C-bus compatible
types for performing functions in all three of
the previously mentioned categories. All
12C-bus compatible devices incorporate

an on-chip interface which allows them

to communicate directly with each other via
the 12C-bus. This design concept solves the
many interfacing problems encountered when
designing digital control circuits.

Here are some of the features of the 12C-bus:

@ Only two bus lines are required; a serial
data line (SDA) and a serial clock line
(SCL)

® Each device connected to the bus is
software addressable by a unique address
and simple master/ slave relationships
exist at all times; masters can operate as
master-transmitters or as master-receivers

® t's a true multi-master bus including
collision detection and arbitration to
prevent data corruption if two or more
masters simultaneously initiate data
transfer

@ Serial, 8-bit oriented, bidirectional data
transfers can be made at up to 100 kbit/s
in the standard mode or up to 400 kbit/s in
the fast mode

® On-chip filtering rejects spikes on the bus

January 1992

data line to preserve data integrity

® The number of ICs that can be connected
to the same bus is limited only by a
maximum bus capacitance of 400 pF

Figure 1 shows two examples of 12C-bus
applications.

1.1 Designer Benefits

12C-bus compatible ICs allow a system
design to rapidly progress directly from a
functional block diagram to a prototype.
Moreover, since they ‘clip’ directly onto the
12C-bus without any additional external
interfacing, they allow a prototype system to
be modified or upgraded simply by
‘clipping’ or ‘unclipping’ ICs to or from the
bus.

Here are some of the features of 12C-bus
compatible ICs which are particularly
attractive to designers:
® Functional blocks on the block diagram

correspond with the actual ICs; designs
proceed rapidly from block diagram to final
schematic

® No need to design bus interfaces because
the 12C-bus interface is already integrated
on-chip

® Integrated addressing and data-transfer
protocol allow systems to be completely
software-defined

® The same IC types can often be used in
many different applications

® Design-time reduces as designers quickly
become familiar with the frequently used
functional blocks represented by 12C-bus
compatible ICs

@ |Cs can be added to or removed from a
system without affecting any other circuits
on the bus

® Fault diagnosis and debugging are simple;
malfunctions can be immediately traced

® Software development time can be
reduced by assembling a library of
reusable software modules.

In addition to these advantages,the CMOS
ICs in the 12C-bus compatible range offer
designers special features which are
particularly attractive for portable equipment
and battery-backed systems.

They all have:

® Extremely low current consumption

@ High noise immunity-

39

® Wide supply voltage range
® Wide operating temperature range.

1.2 Manufacturer benefits

12C-bus compatible ICs don’t only assist

designers, they also give a wide range

of benefits to equipment manufacturers

because:

® The simple 2-wire serial 12C-bus minimizes
interconnections so ICs have fewer pins
and there are not so many PCB tracks;
result — smaller and less expensive PCBs

® The completely integrated 12C-bus protocol
eliminates the need for address decoders
and other ‘glue logic’

® The multi-master capability of the 12C-bus
allows rapid testing and alignment of
end-user equipment via external
connections to an assembly-line computer

® The availability of 2C-bus compatible ICs
in SO (small outline), VSO (very small
outline) as well as DIL packages reduces
space requirements even more.

These are just some of the benefits.

In addition, I2C-bus compatible ICs increase
system design flexibility by allowing simple
construction of equipment variants and easy
upgrading to keep designs up-to-date. In this
way, an entire family of equipment can be
developed around a basic model. Upgrades
for new equipment, or enhanced-feature
models (i.e. extended memory, remote
control, etc.) can then be produced simply by
clipping the appropriate ICs onto the bus. If a
larger ROM is needed, it's simply a matter of
selecting a microcontroller with a larger ROM
from our comprehensive range. As new ICs
supersede older ones, it's easy to add new
features to equipment or to increase its
performance by simply unclipping the
outdated IC from the bus and clipping on its
successor.

1.3 The ACCESS.bus

Another attractive feature of the 12C-bus for
designers and manufacturers is that its
simple 2-wire nature and capability of
software addressing make it an ideal platform
for the ACCESS.bus (Fig.2). Thisis a
lower-cost alternative for an RS-232C
interface for connecting peripherals to a host
computer via a simple 4-pin connector (see
Section 19).

Philips Semiconductors

The 12C-bus and how to use it

MICRO-
CONTROLLER
PCB83C654

NON-VOLATILE

MEMORY
TRANSMITTER
PCF8582E
] UMA1014
_— BGI110
WS COLOUR
DECODER
RECEIVER
TDA9160
NE/SAG06
UMA1014
STEREO / DUAL
OUND
DECODER AUDIO
PROCESSOR
TDA9840 1] NESASTS
NE/SAST51
PICTURE
SIGNAL
IMPROVEMENT DATA
PROCESSOR
TDA4670
UMF1000
HLFI
AUDIO
PROCESSOR WICRO-
CONTROLLER
TDA9860
PBICSS2
VIDEO
PROCESSOR
PERIPHERALS
TDA4G8S
SINGLE-CHIP
TEXT
SAAS246 .
ON-SCREEN |
DISPLAY
@ PCABS10 ®)

=

Figure 1. Two Examples of 12C-Bus Applications: a) A High Performance Highly Integrated TV Set; b) Cellular Radio Chip Set

Table 1. Definition of I2C-Bus Terminology

Term Description
Transmitter The device which sends the data to the bus
Receiver The device which receives the data from the bus
Master The device which initiates a transfer, generates clock signals and terminates a transfer
Slave The device addressed by a master
Multi-master More than one master can attempt to control the buis at the same time without corrupting the message
Arbitration Procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so
and the message is not corrupted
Synchronization | Procedure to synchronize the clock signals of two or more devices
January 1992 40

Philips Semiconductors

The 12C-bus and how to use it

Figure 2. The ACCESS.bus - A Low-Cost Alternative to an RS-232C Interface

MICRO -
CONTROLLER
A

Lco
DRIVER

STATIC
AAMOR
EEPROM

L) —

GATE
ARRAY

ADC

MICRO -
CONTROLLER
B

Figure 3. Examples of an 12C-Bus Configuration Using Two Microcontrollers

2.0 INTRODUCTION TO THE

12C-BUS SECIFICATION

For 8-bit digital control applications, such as

those requiring microcontrollers, certain

design criteria can be established:

® A complete system usually consists of at
least one microcontroller and other
peripheral devices such as memories and
1/0 expanders

® The cost of connecting the various devices
within the system must be minimized

® A system that performs a control function
doesn’t require high-speed data transfer

® Overall efficiency depends on the devices
chosen and the nature of the
interconnecting bus structure.

In order to produce a system to satisfy these
criteria, a serial bus structure is needed.
Although serial buses don’t have the
throughput capability of parallel buses, they
do require less wiring and fewer IC
connecting pins. However, a bus is not
merely an interconnecting wire, it embodies
all the formats and procedures for
communication within the system.

Devices communicating with each other on a
serial bus must have some form of protocol
which avoids all possibilities of confusion,
data loss and blockage of information. Fast
devices must be able to communicate with
slow devices. The system must not be
dependent on the devices connected to it,

January 1992

otherwise modifications or improvements
would be impossible. A procedure has also to
be devised to decide which device will be in
control of the bus and when. And, if different
devices with different clock speeds are
connected to the bus, the bus clock source
must be defined. All these criteria are
involved in the specification of the I2C-bus.

3.0 THE I2C-BUS CONCEPT

The I12C-bus supports any IC fabrication
process (NMOS, CMOS, bipolar). Two wires,
serial data (SDA) and serial clock (SCL),
carry information between the devices
connected to the bus. Each device is
recognised by a unique address — whether
it's a microcontroller, LCD driver, memory or
keyboard interface — and can operate as
either a transmitter or receiver, depending on
the function of the device. Obviously an LCD
driver is only a receiver, whereas a memory
can both receive and transmit data. In
addition to transmitters and receivers,
devices can also be considered as masters
or slaves when performing data transfers
(see Table 1). A master is the device which
initiates a data transfer on the bus and
generates the clock signals to permit that
transfer. At that time, any device addressed
is considered a slave.

The 12C-bus is a multi-master bus. This
means that more than one device capable of

41

controlling the bus can be connected to it. As
masters are usually micro-controllers, let's
consider the case of a data transfer between
two microcontrollers connected to the
12C-bus (Fig.3). This highlights the
master-slave and receiver-transmitter
relationships to be found on the I12C-bus. It
should be noted that these relationships are

not permanent, but only depend on the

direction of data transfer at that time. The

transfer of data would proceed as follows:

1. Suppose microcontroller A wants to send
information to microcontroller B:

— microcontroller A (master), addresses
microcontroller B (slave)

— microcontroller A (master-transmitter),
sends data to microcontroller B
(slave-receiver)

— microcontroller A terminates the transfer.

2. If microcontroller A wants to receive
information from microcontroller B:

— microcontroller A (master) addresses
microcontroller B (slave)

- microcontroller A (master-receiver)
receives data from microcontroller B
(slave-transmitter)

— microcontroller A terminates the transfer.

Even in this case, the master (microcontroller

A) generates the timing and terminates the
transfer.

The possibility of connecting more than one
microcontroller to the I2C-bus means that

Philips Semiconductors

The 12C-bus and how to use it

more than one master could try to initiate a
data transfer at the same time. To avoid the
chaos that might ensue from such an event —
an arbitration procedure has been developed.
This procedure relies on the wired-AND
connection of all I2C interfaces to the
12C-bus.

If two or more masters try to put information
onto the bus, the first to produce a ‘one’ when
the other produces a ‘zero’ will lose the
arbitration. The clock signals during
arbitration are a synchronized combination of
the clocks generated by the masters using
the wired-AND connection to the SCL line
(for more detailed information concerning
arbitration see Section 7.0).

Generation of clock signals on the 12C-bus is
always the responsibility of master devices;
each master generates its own clock signals
when transferring data on the bus. Bus clock
signals from a master can only be altered
when they are stretched by a slow-slave
device holding-down the clock line, or by
another master when arbitration occurs.

4.0 GENERAL
CHARACTERISTICS

Both SDA and SCL are bidirectional lines,
connected to a positive supply voltage via a
pull-up resistor (see Fig.4). When the bus is
free, both lines are HIGH. The output stages
of devices connected to the bus must have
an open-drain or open-collector in order to
perform the wired-AND function. Data on the
12C-bus can be transferred at a rate up to
100 kbit/s in the standard-mode, or up to
400 kbit/s in the fast-mode. The number of
interfaces connected to the bus is solely
dependent on the bus capacitance limit of
400 pF.

5.0 BIT TRANSFER

Due to the variety of different technology
devices (CMOS, NMOS, bipolar) which can
be connected to the [2C-bus, the levels of the
logical ‘0’ (LOW) and ‘1’ (HIGH) are not fixed
and depend on the associated level of Vpp
(see Section 15.0 for Electrical
Specifications). One clock pulse is generated
for each data bit transferred.

5.1 Data Validity
The data on the SDA line must be stable

during the HIGH period of the clock. The
HIGH or LOW state of the data line can only
change when the clock signal on the SCL line
is LOW (see Fig.5).

5.2 START and STOP Conditions
Within the procedure of the 12C-bus, unique
situations arise which are defined as START
and STOP conditions (see Fig.6).

A HIGH to LOW transition on the SDA line
while SCL is HIGH is one such unique case.
This situation indicates a START condition.

A LOW to HIGH transition on the SDA line
while SCL is HIGH defines a STOP condition.

START and STOP conditions are always
generated by the master. The bus is
considered to be busy after the START
condition. The bus is considered to be free
again a certain time after the STOP condition.
This bus free situation is specified in Section
15.0.

Detection of START and STOP conditions by
devices connected to the bus is easy if they
incorporate the necessary interfacing
hardware. However, microcontrollers with no
such interface have to sample the SDA line
at least twice per clock period in order to
sense the transition.

SDA (Serial Data Line)

pull up
resistors

+Vpp
Rp Rp

SCL (Serial Clock Line) l
I SCLK b SCLK
.
} scukNt ||| parant | ! Iscknz I | patanz |
| out ouT | 1 ouT T
|
I i
SCLK DATA I DATA
PO IN LosaK IN
I |
P
DEVICE 1 DEVICE 2

Figure 4. Connection of 12C-Bus Devices to the 12C-Bus

data line
stable;
data valid

1
1 | change |
I | ofdata |
1 1 allowed |

Figure 5. Bit Transfer on the 12C-Bus

start

1
i
I
[} 1
1 1

1 |]

condition stop condition

Figure 6. START and STOP Conditions

January 1992

42

Philips Semiconductors

The 12C-bus and how to use it

7
i
i
:
|
!
i
|
i
!
!
i

iS

scL m ‘

acknowledgement
signal from receiver [

acknowledgement
signal from receiver

byte com plete

interrupt within receiver clock line held low while

interrups are serwced

ACK [Pl

| \;
.
B

2 ACK
START CONDITION STOP CONDITION
Figure 7. Data Transfer on the 12C-Bus
Lo 3
DATAOUTPUT T\ ! r
BY TRANSMITTER | M /[X X: /
|t not acknowledge
DATAOUTPUT | !
BY RECEIVER | |
[acknowledge’
MASTER | | 1 2 - 8 9
(]
clock pulse for
START CONDITION

Figure 8. Acknowledge on the I2C-Bus

acknowledgement

CLK 1

{ counter
"J_\,“/ reset "\
CLK2 (S A
l 3 '
} 1
scL ™\ -

Figure 9. Clock Synchronization During the Arbitration Procedure

6.0 TRANSFERRING DATA

6.1 Byte Format

Every byte put on the SDA line must be 8-bits
long. The number of bytes that can be
transmitted per transfer is unrestricted. Each
byte has to be followed by an acknowledge
bit. Data is transferred with the most
significant bit (MSB) first (Fig.7). If a receiver
can’t receive another complete byte of data
until it has performed some other function, for
example servicing an internal interrupt, it can
hold the clock line SCL LOW to force the
transmitter into a wait state. Data transfer
then continues when the receiver is ready for
another byte of data and releases clock line
SCL.

In some cases, it's permitted to use a
different format from the I2C-bus format (for
CBUS compatible devices for example). A
message which starts with such an address
can be terminated by generation of a STOP

January 1992

condition, even during the transmission of a
byte. In this case, no acknowledge is
generated (see Section 9.1.3).

6.2 Acknowledge

Data transfer with acknowledge is obligatory.
The acknowledge-related clock pulse is
generated by the master. The transmitter
releases the SDA line (HIGH) during the
acknowledge clock pulse.

The receiver must pull down the SDA line
during the acknowledge clock pulse so that it
remains stable LOW during the HIGH period
of this clock pulse (Fig.8). Of course, set-up
and hold times (specified in Section 15) must
also be taken into account.

Usually, a receiver which has been
addressed is obliged to generate an
acknowledge after each byte has been
received, except when the message starts
with a CBUS address (see Section 9.1.3).

43

When a slave-receiver doesn’t acknowledge
the slave address (for example, it's unable to
receive because it's performing some
real-time function), the data line must be left
HIGH by the slave. The master can then
generate a STOP condition to abort the
transfer.

If a slave-receiver does acknowledge the
slave address but, some time later in the
transfer cannot receive any more data bytes,
the master must again abort the transfer. This
is indicated by the siave generating the not
acknowledge on the first byte to follow. The
slave leaves the data line HIGH and the
master generates the STOP condition.

If a master-receiver is involved in a transfer, it
must signal the end of data to the slave-
transmitter by not generating an acknowledge
on the last byte that was clocked out of the
slave. The slave-transmitter must release the
data line to allow the master to generate the
STOP condition.

Philips Semiconductors

The 12C-bus and how to

use it

7.0 ARBITRATION AND CLOCK
GENERATION

7.1 Synchronization

All masters generate their own clock on the
SCL line to transfer messages on the
12C-bus. Data is only valid during the HIGH
period of the clock. A defined clock is
therefore needed for the bit-by-bit arbitration
procedure to take place.

Clock synchronization is performed using the
wired-AND connection of I12C interfaces to the
SCL line. This means that a HIGH to LOW
transition on the SCL line will cause the
devices concerned to start counting off their
LOW period and, once a device clock has
gone LOW, it will hold the SCL line in that
state until the clock HIGH state is reached
(Fig.9). However, the LOW to HIGH transition
of this clock may not change the state of the
SCL line if another clock is still within its LOW
period. The SCL line will therefore be held
LOW by the device with the longest LOW
period. Devices with shorter LOW periods
enter a HIGH wait-state during this time.

When all devices concerned have counted off
their LOW period, the clock line will be
released and go HIGH. There will then be no
difference between the device clocks and the
state of the SCL line, and all the devices will
start counting their HIGH periods. The first
device to complete its HIGH period will again
pull the SCL line LOW.

In this way, a synchronized SCL clock is
generated with its LOW period determined by
the device with the longest clock LOW
period, and its HIGH period

determined by the one with the shortest clock
HIGH period.

7.2 Arbitration

A master may start a transfer only if the bus
is free. Two or more masters may generate a
START condition within the minimum hold

time (tHp;sTA) Of the START condition which
results in a defined START condition to the
bus.

Arbitration takes place on the SDA line, while
the SCL line is at the HIGH level, in such a
way that the master which transmits a HIGH
level, while another master is transmitting a
LOW level will switch off its DATA output
stage because the level on the bus doesn’t
correspond to its own level.

Arbitration can continue for many bits. Its first
stage is comparison of the address bits
(addressing information is in Sections 9.0
and 13.0). If the masters are each trying to
address the same device, arbitration
continues with comparison of the data.
Because address and data information on the
12C-bus is used for arbitration, no information
is lost during this process.

A master which loses the arbitration can
generate clock pulses until the end of the
byte in which it loses the arbitration.

If a master also incorporates a slave function
and it loses

arbitration during the addressing stage, it's
possible that the winning master is trying to
address it. The losing master must therefore
switch over immediately to its slave-receiver
mode.

Figure 10 shows the arbitration procedure for
two masters. Of course, more may be
involved (depending on how many masters
are connected to the bus). The moment there
is a difference between the internal data level
of the master generating DATA 1 and the
actual level on the SDA line, its data output is
switched off, which means that a HIGH
output level is then connected to the bus.
This will not affect the data transfer initiated
by the winning master.

Since control of the 12C-bus is decided solely
on the address and data sent by competing

masters, there is no central master, nor any
order of priority on the bus.

Special attention must be paid if, during a
serial transfer, the arbitration procedure is still
in progress at the moment when a repeated
START condition or a STOP condition is
transmitted to the 12C-bus. If it's possible for
such a situation to occur, the masters
involved must send this repeated START
condition or STOP condition at the same
position in the format frame. In other words,
arbitration isn’t allowed between:
— A repeated START condition and a data
bit
— A STOP condition and a data bit
— Arepeated START condition and a
STOP condition.

7.3 Use of the Clock
Synchronising Mechanism as a
Handshake

In addition to being used during the
arbitration procedure, the clock
synchronization mechanism can be used to
enable receivers to cope with fast data
transfers, on either a byte level or a bit level.

On the byte level, a device may be able to
receive bytes of data at a fast rate, but needs
more time to store a received byte or prepare
another byte to be transmitted. Slaves can
then hold the SCL line LOW after reception
and acknowledgement of a byte to force the
master into a wait state until the slave is
ready for the next byte transfer in a type of
handshake procedure.

On the bit level, a device such as a
microcontroller without, or with only a limited
hardware 12C interface on-chip can slow
down the bus clock by extending each clock
LOW period. The speed of any master is
thereby adapted to the internal operating rate
of this device.

DATA 1 = SDA

transmitter 1 loses arbitration

Figure 10. Arbitration Procedure of Two Masters

January 1992

44

Philips Semiconductors

The 12C-bus and how to use it

8.0 FORMATS WITH 7-BIT - Master-transmitter transmits to NOTES:

ADDRESSES slave-receiver. The transfer direction 1. Combined formats can be used, for
Data transfers follow the format shown in is not changed (Fig.12) example, to control a serial memory.
Fig.11. After the START condition (S), aslave ~ — Master reads slave immediately after During the first data byte, the internal
address is sent. This address is 7 bits long first byte (Fig.13). At the moment of the memory location has to be written. After

the START condition and slave address is

followed by an eighth bit which is a data first acknowledge, the master—transmitter repeated, data can be transferred.
direction bit (R/W) — a ‘zero’ indicates a becomes a master-receiver and the 2. All decisions on auto-increment or
transmission (WRITE), a ‘one’ indicates a slave-receiver becomes a decrement of previously accessed
request for data (READ). A data transfer is slave-transmitter. This acknowledge is memory locations etc. are taken by the
always terminated by a STOP condition (P) still generated by the slave. The STOP designer of the device.

generated by the master. However, if a condition is generated by the master 3. Each byte is followed by an

master still wishes to communicate on the — Combined format (Fig.14). During a acknowledgement bit as indicated by the
bus, it can generate a repeated START change of direction within a transfer, the 'Zor Ablocks in the sequence.

condition (Sr) and address another slave START condition and the slave address % :hC'. bgs °'° mpatible deylcefs mé’%\':.?et
without first generating a STOP condition. are both repeated, but with the R/W bit re::at:?j g-?-f;-? égﬁzli?izz sich that t?\rey
Various combinations of read/write formats reversed.

all anticipate the sending of a slave

are then possible within such a transfer. address.

Possible data transfer formats are:

VAVAW S VAVARN =

(S EN | SN | S— 1L
STAAT ADORESS AW ACK DATA ACK DATA ACK STOP
CONDITION CONDITION

Figure 11. A Complete Data Transfer

SCL

S

t S’%LAVE ADDRLSS%W& gDAYAﬂ gDATAa WA gPﬂ

data transferred
o (wnle) (n bytes + acknowledge)

2 1 I
FA trom master o siave A - acknowiedge (SDALOW)

A = not acknowledge (SDA HIGH)
S = START condition
MHCE0S P = STOP condition

[trom siave to master

Figure 12. A Master-Transmitter Addresses a Slave Receiver With a 7-Bit Address. The Transfer Direction is not Changed

Es%suvs Anones%wa I oara P& oata [Zg 7|

data translerred ——
MBC506 (vead) (n bytes + acknowledge)

Figure 13. A Master Reads a Slave Inmediately After the First Byte

l:/s%suvé ADoness/,tmwi Imulm}:s?gsuve ADD?ESSI%R/WJ IDATA]MEPQ

| | (nbytes | | bytes, |
.
waceor read orwrito * 3% ack)®
read or write direction
of transfer
* transler direction o may change
data and acknowledge bits Sr = repeated START condition at this point

depends on R/W bits.

Figure 14. Combined Format

January 1992 45

Philips Semiconductors

The 12C-bus and how to use it

Table 2. Definition of Bits in the First Byte

Slave address R/ bit Description
0000 000 0 General call address
0000 000 1 START byte
0000 001 X CBUS address
0000 010 X Address reserved for different bus format
0000 011 X Reserved for future purposes
0000 1XX X Reserved for future purposes
1111 1XX X Reserved for future purposes
1111 0XX X 10-bit slave addressing
NOTES:

1. No device is allowed to acknowledge at the reception of the START byte.
2. The CBUS address has been reserved to enable the inter-mixing of CBUS compatible and 12C-bus compatible devices in the same system.
12C-bus compatible devices are not allowed to respond on reception of this address.
3. The address reserved for a different bus format is included to enable 12C and other protocols to be mixed. Only 12C-bus compatible devices
that can work with such formats and protocols are allowed to respond to this address.

9.0 7-BIT ADDRESSING

(see Section 13.0 for 10-Bit
Addressing)

The addressing procedure for the 12C-bus is
such that the first byte after the START
condition usually determines which slave will
be selected by the master. The exception is
the ‘general call’ address which can address
all devices. When this address is used, all
devices should, in theory, respond with an
acknowledge. However, devices can be
made to ignore this address. The second
byte of the general call address then defines
the action to be taken. This procedure is
explained in more detail in Section 9.1.1.

9.1 Definition of Bits in the First
Byte

The first seven bits of the first byte make up
the slave address (Fig.15). The eighth bit is
the LSB (least significant bit). It determines
the direction of the message. A ‘zero’ in the
least significant position of the first byte
means that the master will write information
to a selected slave. A ‘one’ in this position
means that the master will read information
from the slave.

When an address is sent, each device in a
system compares the first seven bits after the
START condition with its address. If they
match, the device considers itself addressed
by the master as a slave-receiver or
slave-transmitter, depending on the R/W bit.

A slave address can be made-up of a fixed
and a programmable part. Since it’s likely that
there will be several identical devices in a
system, the programmable part of the slave
address enables the maximum possible
number of such devices to be connected to

January 1992

the 12C-bus. The number of programmable
address bits of a device depends on the
number of pins available. For example, if a
device has 4 fixed and 3 programmable
address bits, a total of 8 identical devices can
be connected to the same bus.

The 12C-bus committee coordinates
allocation of I2C addresses. Further
information can be obtained from the Philips
representatives listed on the back cover. Two
groups of eight addresses (0000XXX and
1111XXX) are reserved for the purposes
shown in Table 2. The bit combination
11110XX of the slave address is reserved for
10-bit addressing (see Section 13).

9.1.1 General Call Address

The general call address is for addressing
every device connected to the [2C-bus.
However, if a device doesn’t need any of the
data supplied within the general call
structure, it can ignore this address by not
issuing an acknowledgement. If a device
does require data from a general call
address, it will acknowledge this address and
behave as a slave-receiver. The second and
following bytes will be acknowledged by
every slave-receiver capable of handling this
data. A slave which cannot process one of
these bytes must ignore it by not
acknowledging. The meaning of the general
call address is always specified in the second
byte (Fig.16).

There are two cases to consider:
©® When the least significant bit B is a ‘zero’

©® When the least significant bit B is a ‘one’.

When bit B is a ‘zero’; the second byte has
the following definition:

46

— 00000110 (H‘06’). Reset and write
programmable part of slave address by
hardware. On receiving this 2-byte
sequence, all devices designed to
respond to the general call address will
reset and take in the programmable part
of their address. Precautions have to be
taken to ensure that a device is not
pulling down the SDA or SCL line after
applying the supply voltage, since these
low levels would block the bus

— 00000100 (H‘04’). Write programmable

part of slave address by hardware. All

devices which define the programmable
part of their address by hardware (and
which respond to the general call
address) will latch this programmable
part at the reception of this two byte
sequence. The device will not reset.

00000000 (H‘00’). This code is not

allowed to be used as the second byte.

Sequences of programming procedure are
published in the appropriate device data
sheets.

The remaining codes have not been fixed
and devices must ignore them.

When bit B is a ‘one’; the 2-byte sequence is
a ‘hardware general call’. This means that the
sequence is transmitted by a hardware
master device, such as a keyboard scanner,
which cannot be programmed to transmit a
desired slave address. Since a hardware
master doesn’t know in advance to which
device the message has to be transferred, it
can only generate this hardware general call
and its own address — identifying itself to the
system (Fig.17).

The seven bits remaining in the second byte
contain the address of the hardware master.

Philips Semiconductors

The 12C-bus and how to use it

This address is recognised by an intelligent
device (e.g. a microcontroller) connected to
the bus which will then direct the information
from the hardware master. If the hardware
master can also act as a slave, the slave

In some systems, an alternative could be that
the hardware master transmitter is set in the
slave-receiver mode after the system reset.
In this way, a system configuring master can
tell the hardware master-transmitter (which is

now in slave-receiver mode) to which
address data must be sent (Fig.18). After this
programming procedure, the hardware
master remains in the master-transmitter
mode.

address is identical to the master address.

L———— slave address ————

Figure 15. The First Byte After the START Procedure

[oeTo[e e [o[e[e XXX [X[Io] 4]
L first byte 1

(general call address)

second byte —-

Figure 16. General Call Address Format

Es 600000001 A [MASTER ADDRESS/% A DAqu AKJATA’{A 'i%
(8)
— SRS -
general second (n bytes + ack.)
call address byte

Figure 17. Data Transfer From a Hardware Master-Transmitter

VS%/SLAVE ADDR. HW MASTER%RIWI A %UMP ADDR. FOR HW MASTER%A EP%
|

write

a. Configuring master sends dump address to hardware master

KS%UMP ADDR. FROM HW MASTEHqFVW] A EDATA% A EDATAq AA E%
! |

— ——— —

(n bytes + ack.)
b. Hardware master dumps data to selected slave

write

Figure 18. Data Transfer by a Hardware-Transmitter Capable of Dumping Data Directly to Slave Devices

January 1992 47

Philips Semiconductors

The 12C-bus and how to use it

N N
SDA | \ | dummy |
1o HGH) ||
[[
w TN/ SN\
s T ACK sr
L2 L7
|- start byte 00000001 ————|
Figure 19. START Byte Procedure
I i
son T\! A G A G BN G SN SN D :
]

[
DLEN /] ;
1 gl " 1 1 1 .P
n — data bits CBUS STOP
START CBUS RW ACK load pulse conditon
condition address bit related
clock pulse

Figure 20. Data Format of Transmissions with CBUS Transmitter/Receiver

9.1.2 START byte

Microcontrollers can be connected to the
12C-bus in two ways. A microcontroller with
an on-chip hardware 12C-bus interface can be
programmed to be only interrupted by
requests from the bus. When the device
doesn’t have such an interface, it must
constantly monitor the bus via software.
Obviously, the more times the microcontroller
monitors, or polls the bus, the less time it can
spend carrying out its intended function.

There is therefore a speed difference
between fast hardware devices and a
relatively slow microcontroller which relies on
software polling.

In this case, data transfer can be preceded
by a start procedure which is much longer
than normal (Fig.19). The start procedure
consists of:

— A START condition (S)

— A START byte (00000001)

— An acknowledge clock pulse (ACK)

— Arepeated START condition (Sr).

After the START condition S has been

January 1992

transmitted by a master which requires bus
access, the START byte (00000001) is
transmitted. Another microcontroller can
therefore sample the SDA line at a low
sampling rate until one of the seven zeros in
the START byte is detected. After detection
of this LOW level on the SDA line, the
microcontroller can switch to a higher
sampling rate to find the repeated START
condition Sr which is then used for
synchronization.

A hardware receiver will reset on receipt of
the repeated START condition Sr and will
therefore ignore the START byte.

An acknowledge-related clock pulse is
generated after the START byte. This is
present only to conform with the byte
handling format used on the bus. No device
is allowed to acknowledge the START byte.

9.1.3 CBUS Compatibility
CBUS receivers can be connected to the
12C-bus. However, a third bus line called
DLEN must then be connected and the

48

acknowledge bit omitted. Normally, 12C
transmissions are sequences of 8-bit bytes;
CBUS compatible devices have different
formats.

In a mixed bus structure, [2C-bus devices
must not respond to the CBUS message. For
this reason, a special CBUS address
(0000001X) to which no 12C-bus compatible
device will respond, has been reserved. After
transmission of the CBUS address, the DLEN
line can be made active and a CBUS-format
transmission (Fig.20) sent. After the STOP
condition, all devices are again ready to
accept data.

Master-transmitters can send CBUS formats
after sending the CBUS address. The
transmission is ended by a STOP condition,
recognised by all devices.

NOTE: If the CBUS configuration is known,
and expansion with CBUS compatible
devices isn't foreseen, the designer is
allowed to adapt the hold time to the specific
requirements of the device(s) used.

Philips Semiconductors

The 12C-bus and how to use it

10.0 ELECTRICAL
CHARACTERISTICS FOR I2C-BUS
DEVICES

The electrical specifications for the 1/Os of
12C-bus devices and the characteristics of the
bus lines connected to them are given in
Tables 3 and 4 in Section 15.

12C-bus devices with fixed input levels of
1.5 Vand 3 V can each have their own
appropriate supply voltage. Puli-up resistors

must be connectedtoa 5 V + 10% supply
(Fig.21). I2C-bus devices with input levels
related to Vpp must have one common
supply line to which the pull-up resistor is
also connected (Fig.22).

When devices with fixed input levels are
mixed with devices with input levels related to
Vpp, the latter devices must be connected to
one common supply line of 5 V + 10% and
must have pull-up resistors connected to their
SDA and SCL pins as shown in Fig.23.

Input levels are defined in such a way that:

— The noise margin on the LOW level is
0.1 Vpp

— The noise margin on the HIGH level is
0.2 Vpp

— As shown in Fig.24, series resistors (Rs)
of e.g. 300 Q can be used for protection
against high-voltage spikes on the SDA
and SCL lines (due to flash-over of a TV
picture tube, for example).

SDA

Hp Rp

Vpp1=5V£10% = Vpp2 Vpp3

Vopa

BIPOLAR

VDD2,3 are device dependent (e.g., 12V)

SCL

o] o] [oo]
| | |

ool
1

Figure 21. Fixed Input Level Devices Connected to the 12C-Bus

SCL

1 1
Rp| | Rp| CMOS CMOS CMOS
SDA T T

Figure 22. Devices with Wide Supply Range Connected to the 12C-Bus

VpD2,3 are device dependent (e.g., 12V)

Vopi=

5VE1I0% Vo2

VbD3

|
Rp| cmos | cMOS

! |

|

Figure 23. Devices with Input Levels Related to Vpp (Supply Vpp1)
Mixed with Fixed Input Level Devices (Supply Vpp23) on the 12C-Bus

Vop

Figure 24. Series Resistors (RS) for Protection Against High-Voltage Spikes

January 1992

49

Philips Semiconductors

The 12C-bus and how to use it

10.1 Maximum and minimum
values of resistors R, and Rg
For standard-mode 12C-bus devices, the
values of resistors Ry and Rg in Fig.24
depend on the following parameters:

— Supply voltage

— Bus capacitance

~ Number of connected devices (input
current + leakage current).

The supply voltage limits the minimum value
of resistor R, due

to the specified minimum sink current of 3 mA
at VoLmax = 0.4 V for the output stages. Vpp
as a function of Ry min is shown in Fig.25.
The desired noise margin of 0.1Vpp for the
LOW level, limits the maximum value of Rg.
Rs max as a function of Ry, is shown in
Fig.26.

The bus capacitance is the total capacitance
of wire, connections and pins. This
capacitance limits the maximum value of Ry
due to the specified rise time. Fig.27 shows

Rp max as a function of bus capacitance.

The maximum HIGH level input current of
each input/output connection has a specified
maximum value of 10 pA. Due to the desired
noise margin of 0.2Vpp for the HIGH level,
this input current limits the maximum value of
Rp. This limit depends on Vpp. The total
HIGH level input current is shown as a
function of Ry max in Fig.28.

11.0 EXTENSIONS TO THE
12C-BUS SPECIFICATION

The 12C-bus with a data transfer rate of up to
100 kbit/s and 7-bit addressing has now been
in existence for more than ten years with an
unchanged specification. The concept is
accepted world-wide as a de facto standard
and hundreds of different types of 12C-bus
compatible ICs are available from Philips and
other suppliers. The [2C-bus specification is
now extended with the following two features:

©® A fast-mode which allows a fourfold
increase of the bit rate to 0 to 400 kbit/s

® 10-bit addressing which allows the use of
up to 1024 additional addresses.

There are two reasons for these extensions
to the 12C-bus specification:

— New applications will need to transfer a
larger amount of serial data and will
therefore demand a higher bit rate than
100 kbit/s. Improved IC manufacturing
technology now allows a fourfold speed
increase without increasing the
manufacturing cost of the interface
circuitry
Most of the 112 addresses available with
the 7-bit addressing scheme have been
issued more than once. To prevent
problems with the allocation of slave
addresses for new devices, it is
desirable to have more address
combinations. About a tenfold increase
of the number of available addresses is
obtained with the new 10-bit addressing.

miimum
value g §

Rp
(ks2)

ka2

Hg=0

max Rg

12 16
Vop (V)

Figure 25. Minimum Value of Rp as a Function of
Supply Voltage with the Value of Rg as a Parameter

)4

T 1
sV

15V

800 1600
maximum value Rg (2)

400 1200

Figure 26. Maximum Value of Rg as a Function of
the Value of Rp with Supply Voltage as a Parameter

bus capacitance (pF)

Figure 27. Maximum Value of Rp as a Function of
Bus Capacitance for a Standard-Mode 12C-Bus

maximum 20 maxmum
value Flp value Hv
ety (k&)
12 \Q\
L Ag-0
8
X
| __maxRg
@Vpp=5V e
o | | [H
o 100 200 300 400

20

1A
\
AL AN
\
A
VDD‘ 15V
Iy
rev—
4[5V
= =
5V
40 80 120 160 200

total high level input current (uA}

Figure 28. Total HIGH Level Input Current as a Function of
the Maximum Value of Rp with Supply Voltage as a Parameter

January 1992

50

Philips Semiconductors

The 12C-bus and how to use it

All new devices with an 12C-bus interface are
provided with the fast-mode. Preferably, they
should be able to receive and/or transmit at
400 kbit/s. The minimum requirement is that
they can synchronize with a 400 kbit/s
transfer; they can then prolong the LOW
period of the SCL signal to slow down the
transfer. Fast-mode devices must be
downward-compatible which means that they
must still be able to communicate with 0 to
100 kbit/s devices in a 0 to 100 kbit/s
12C-bus system.

Obviously, devices with a 0 to 100 kbit/s
12C-bus interface cannot be incorporated in a
fast-mode 12C-bus system because, since
they cannot follow the higher transfer rate,
unpredictable states of these devices would
occur.

Slave devices with a fast-mode 12C-bus
interface can have a 7-bit or a 10-bit slave
address. However, a 7-bit address is
preferred because it is the cheapest solution
in hardware and it results in the shortest
message length. Devices with 7-bit and 10-bit
addresses can be mixed in the same 12C-bus
system regardless of whether itis a 0 to

100 kbit/s standard-mode system or a 0 to
400 kbit/s fast-mode system. Both existing
and future masters can generate either 7-bit
or 10-bit addresses.

12.0 FAST-MODE
In the fast-mode of the 12C-bus, the protocol,
format, logic levels and maximum capacitive
load for the SDA and SCL lines quoted in the
previous 12C-bus specification are
unchanged. Changes to the previous 12C-bus
specification are:
- The maximum bit rate is increased to
400 kbit/s
— Timing of the serial data (SDA) and
serial clock (SCL) signals has been
adapted. There is no need for
compatibility with other bus systems
such as CBUS because they cannot
operate at the increased bit rate
The inputs of fast-mode devices must
incorporate spike suppression and a
Schmitt trigger at the SDA and SCL
inputs
— The output buffers of fast-mode devices
must incorporate slope control of the
falling edges of the SDA and SCL
signals
If the power supply to a fast-mode
device is switched off, the SDA and SCL
1/O pins must be floating so that they
don’t obstruct the bus lines
- The external pull-up devices connected
to the bus lines must be adapted to
accommodate the shorter maximum

January 1992

permissible rise time for the fast-mode
12C-bus. For bus loads up to 200 pF, the
pull-up device for each bus line can be a
resistor; for bus loads between 200 pF
and 400 pF, the pull-up device can be a
current source (3mA max.) or a switched
resistor circuit as shown in Fig.37.

13.0 10-BIT ADDRESSING

The 10-bit addressing does not change the
format in the 12C-bus specification. Using 10
bits for addressing exploits the reserved
combination 1111XXX for the first seven bits
of the first byte following a START (S) or
repeated START (Sr) condition as explained
in Section 9.1. The 10-bit addressing does
not affect the existing 7-bit addressing.
Devices with 7-bit and 10-bit addresses can
be connected to the same 12C-bus, and both
7-bit and 10-bit addressing can be used in a
standard-mode system (up to 100 kbit/s) or a
fast-mode system (up to 400 kbit/s).

Although there are eight possible
combinations of the reserved address bits
1111XXX, only the four combinations
11110XX are used for 10-bit addressing. The
remaining four combinations 11111XX are
reserved for future 12C-bus enhancements.

13.1 Definition of Bits in the First

Two Bytes

The 10-bit slave address is formed from the
first two bytes following a START condition
(S) or a repeated START condition (Sr).

The first seven bits of the first byte are the
combination 11110XX of which the last two
bits (XX) are the two most-significant bits
(MSBs) of the 10-bit address; the eighth bit of
the first byte is the R/W bit that determines
the direction of the message. A ‘zero’ in the
least significant position of the first byte
means that the master will write information
to a selected slave. A ‘one’ in this position
means that the master will read information
from the slave.

If the R/W bitis ‘zero’, then the second byte
contains the remaining 8 bits (XXXXXXXX) of
the 10-bit address. If the R/W bit is ‘one’, then
the next byte contains data transmitted from
a slave to a master.

13.2 Formats with 10-bit
Addresses

Various combinations of read/write formats
are possible within a transfer that includes
10-bit addressing. Possible data transfer
formats are:

— Master-transmitter transmits to
slave-receiver with a 10-bit slave
address. The transfer direction is not
changed (Fig.29). When a 10-bit

51

address follows a START condition,

each slave compares the first seven bits
of the first byte of the slave address
(11110XX) with its own address and
tests if the eighth bit (R/W direction bit) is
0. Itis possible that more than one
device will find a match and generate an
acknowledge (A1). All slaves that found
a match will compare the eight bits of the
second byte of the slave address
(XXXXXXXX) with their own addresses,
but only one slave will find a match and
generate an acknowledge (A2). The
matching slave will remain addressed by
the master until it receives a STOP
condition (P) or a repeated START
condition (Sr) followed by a different
slave address

NOTES:

1. Combined formats can be used, for
example, to control a serial memory.
During the first data byte, the internal
memory location has to be written. After
the START condition and slave address is
repeated, data can be transferred.

2. All decisions on auto-increment or

decrement of previously accessed
memory locations etc. are taken by the
designer of the device.

3. Each byte is followed by an
acknowledgement bit as indicated by the
A or A blocks in the sequence.

4. 12C-bus compatible devices must reset
their bus logic on receipt of a START or
repeated START condition such that they
all anticipate the sending of a slave
address.

— Master-receiver reads slave-
transmitter with a 10-bit slave
address. The transfer direction is
changed after the second R/W bit
(Fig.30). Up to and including
acknowledge bit A2, the procedure is the
same as that described for a
master-transmitter addressing a
slave-receiver. After the repeated
START condition (Sr), a matching slave
remembers that it was addressed
before. This slave then checks if the first
seven bits of the first byte of the slave
address following Sr are the same as
they were after the START condition (S),
and tests if the eighth (R/W) bitiis 1. If
there is a match, the slave considers
that it has been addressed as a
transmitter and generates acknowledge
A3. The slave-transmitter remains
addressed until it receives a STOP
condition (P) or until it receives another
repeated START condition (Sr) followed
by a different slave address. After a
repeated START condition (Sr), all the
other slave devices will also compare
the first seven bits of the first byte of the
slave address (11110XX) with their own

Philips Semiconductors

The 12C-bus and how to use it

addresses and test the eighth (R/W) bit.
However, none of them will be
addressed because R/W = 1 (for 10-bit
devices), or the 11110XX slave address
(for 7-bit devices) does not match)

— Combined format. A master transmits
data to a slave and then reads data
from the same slave (Fig.31). The
same master occupies the bus all the

time. The transfer direction is changed
after the second R/W bit

— Combined format. A master transmits
data to one slave and then transmits
data to another slave (Fig.32). The
same master occupies the bus all the
time

- Combined format. 10-bit and 7-bit
addressing combined in one serial

transfer (Fig.33). After each START
condition (S), or each repeated START
condition (Sr), a 10-bit or 7-bit slave
address can be transmitted. Figure 33
shows how a master-transmits data to a
slave with a 7-bit address and then
transmits data to a second slave with a
10-bit address. The same master
occupies the bus all the time.

T1I1I1I0XX 0

SLAVE ADDRES!
151 78IS -

E

{2 SLAVE ADDRE SS OATA, 5 A%
T m R RS] | Al

(wnita)

Figure 29. A Master-Transmitter Addresses a Slave-Receiver with a 10-Bit Address

11110XX 11110XX 1
[AVE ADDRESS SUAVE ADDRESS SUAVE ADDRESS
Ej’/ 1st 7BITS f/j“"';] L/ 2na BYTE ///,1 FS{ /15t 78ITS //T”-W] “ DAIAF J ”‘”\E A 1
“""‘e’ ey

Figure 30. A Master-Receiver Addresses a Slave-Transmitter with a 10-Bit Address

11 110XX 0
L AVF ADDR| AV HESS " 654, 5
[*,”15/ st zalrsExbstW] oo VIE q1 A [D,A.”‘] A I t",‘},‘i”" \)

(wnte)

/ T1110XX 1
A 7
AR B

(rr“\dl

Figure 31. Combined Format. A Master Addresses a Slave with a 10-Bit
Address, then Transmits Data to this Slave and Reads Data from this Slave

1i110xX o
STAVE ADDRESS SUAVE ADDRESS
ES Ist 7BITS //} } I;/ 2nd BYIE //1 [D”“J A

(wnwl -

E()AvA]NA
1T1110XX 0

\... /SUAVE ADORESSI7Z " TSIAVE AGDRL ss
S s TS AW A L e £ ‘ ”“A ["‘“‘ AL
]
{wnie)

Figure 32. Combined Format. A Master Transmits Data to Two Slaves, Both With 10-Bit Addresses

E{s })LAVL m)nnss,.’“w ”’”AI 1 IUAIA}A,A

(wnite}

!
11110XX 0

& [1s1 78ITS OF 10.817] 2nd BYTE OF 10 BI1 77
[° Ismvr ADDRFSS {“’Wl A Lsn AVE ADI)RFSS‘I A i"““i A]

(wnlv')

TP
I')ATA B

Figure 33. Combined Format. A Master Transmits Data to Two Slaves, One With a 7-Bit Address, and One with a 10-Bit Address.

January 1992 52

Philips Semiconductors

The 12C-bus and how to use it

LT

|
by |
tsussto = | !
'

- <« 'HD;STA - e - - - le -
P S ! HD.DAT THIGH supAT 'SUSTA' g | P
Figure 34. Definition of Timing on the I2C-Bus
Table 3. Characteristics of the SDA and SCL /O Stages for I2C-Bus Devices
Parameter Symbol standard-mode devices fast-mode devices Unit
Min. Max. Min. Max.

LOW level input voltage: Vi -0.5 1.5 -0.5 1.5 \Y
fixed input levels 05 0.3V, -0.5 0.3V,
Vpp-related input levels bo oo

HIGH level input voltage: ViH 3.0 1) 3.0 1) Vv
fixed input levels 0.7Vpp *1) 0.7Vpp 1)
Vpp-related input levels

Hysteresis of Schmitt trigger inputs: Vhys n/a n/a 0.2 - Vv
fixed input levels n/a n/a 0.05Vpp -
Vpp-related input levels

Pulse width of spikes which must be suppressed by the input tsp n/a n/a 0 50 ns

filter

LOW level output voltage (open drain or open collector): Vo1 0 0.4 0 0.4 \
at 3 maA sink current VoLz n/a n/a 0 0.6
at 6 mA sink current

Output fall time from Vi min. 10 Vi max, With a bus capacitance tor 2502 20 +0.1C,2 250 ns

from 10 pF to 400 pF: n/a 20 +0.1C,2) 2503
with up to 3 mA sink current at Vg - 2502) 20 +0.1Cy2) 250
with up to 6 mA sink current at Vo » n/a n/a 20 + 0.1Cp2) 2503)

Input current each I/O pin with an input voltage between 0.4 V l; -10 10 $109 103 uA

and 0.9Vpp max.

Capacitance for each I/O pin Ci - 10 - 10 pF

NOTES:
n/a = not applicable
1. maximum Vi = Vpp max. + 0.5 V

2. Cp = capacitance of one bus line in pF. Note that the maximum tr for the SDA and SCL bus lines quoted in Table 4 (300 ns) is longer than

the specified maximum tof for the output stages (250 ns). This allows series protection resistors (Rg)to be connected between the
SDAJ/SCL pins and the SDA/SCL bus lines as shown in Fig.37 without exceeding the maximum specified t

3. /O pins of fast-mode devices must not obstruct the SDA and SCL lines if Vpp is switched off.

January 1992 53

Philips Semiconductors

The 12C-bus and how to use it

14.0 GENERAL CALL ADDRESS
AND START BYTE

The 10-bit addressing procedure for the
12C-bus is such that the first two bytes after
the START condition (S) usually determine
which slave will be selected by the master.
The exception is the ‘general call’ address
00000000 (H‘00°). Slave devices with 10-bit
addressing will react to a ‘general call’ in the
same way as slave devices with 7-bit
addressing (see Section 9.1.1).

Hardware masters can transmit their 10-bit
address after a ‘general call’. In this case, the
‘general call’ address byte is followed by two
successive bytes containing the 10-bit
address of the master-transmitter. The format
is as shown in Fig.17 where the first DATA
byte contains the eight least-significant bits of
the master address.

The START byte 00000001 (H‘01’) can
precede the 10-bit addressing in the same
way as for 7-bit addressing (see Section
9.1.2).

15.0 ELECTRICAL

SPECIFICATIONS

The I/O levels, 1/O current, spike
suppression, output slope control and pin
capacitance for I2C-bus devices are given in
Table 3. The 12C-bus timing is given in Table
4. Figure 34 shows the timing definitions for
the 12C-bus.

The noise margin for HIGH and LOW levels
on the bus lines for fast-mode devices are
the same as those specified in Section 10.0
for standard-mode I2C-bus devices.

The minimum HIGH and LOW periods of the
SCL clock specified in Table 4 determine the
maximum bit transfer rates of 100 kbit/s for
standard-mode devices and 400 kbit/s for
fast mode devices. Standard-mode and
fast-mode 12C-bus devices must be able to
follow transfers at their own maximum bit
rates, either by being able to transmit or
receive at that speed or by applying the clock
synchronization procedure described in
Section 7 which will force the master into a
wait state and stretch the LOW period of the
SCL signal. Of course, in the latter case the
bit transfer rate is reduced.

16.0 APPLICATION
INFORMATION

16.1 Slope-Controlled Output
Stages of Fast-Mode 12C-Bus

Devices
The electrical specifications for the 1/Os of

January 1992

12C-bus devices and the characteristics of the
bus lines connected to them are given in
Tables 3 and 4 in Section 15.

Figures 35 and 36 show examples of output
stages with slope control in CMOS and
bipolar technology. The slope of the falling
edge is defined by a Miller capacitor (C1) and
a resistor (R1). The typical values for C1 and
R1 are indicated on the diagrams. The wide
tolerance for output fall time tog given in
Table 3 means that the design is not critical.
The fall time is only slightly influenced by the
external bus load (Cp) and external pull-up
resistor (Rp). However, the rise time (tg)
specified in Table 4 is mainly determined by
the bus load capacitance and the value of the
pull-up resistor.

16.2 Switched Pull-Up Circuit for
Fast-Mode 12C-Bus Devices

The supply voltage (Vpp) and the maximum
output LOW level determine the minimum
value of pull-up resistor R, (see Section
10.1). For example, with a supply voltage of
Vpp=5V + 10% and Vo max. = 0.4 V at

3 mA, Ry min. = (5.5 - 0.4)/0.003 = 1.7 kQ.
As shown in Fig.38, this value of Ry limits the
maximum bus capacitance to about 200 pF
to meet the maximum tg requirement of

300 ns. If the bus has a higher capacitance
than this, a switched pull-up circuit as shown
in Fig.37 can be used.

The switched pull-up circuit in Fig.37 is for a
supply voltage of Vpp=5 V + 10 % and a
maximum capacitive load of 400 pF. Since it
is controlled by the bus levels, it needs no
additional switching control signals. During
the rising/falling edges, the bilateral switch in
the HCT4066 switches pull-up resistor Rp2
on/off at bus levels between 0.8 Vand 2.0 V.
Combined resistors R,1 and Rp2 can pull-up
the bus line within the maximum specified
rise time (tg) of 300 ns. The maximum sink
current for the driving I2C-bus device will not
exceed 6 mA atVo 2 =0.6 V,or3 mA at
Vo1 =04 V.

Series resistors Rg are optional. They protect
the 1/O stages of the I2C-bus devices from
high-voltage spikes on the bus lines, and
minimize crosstalk and undershoot of the bus
line signals. The maximum value of Rg is
determined by the maximum permitted
voltage drop across this resistor when the
bus line is switched to the LOW level in order
to switch off R2.

54

16.3 Wiring Pattern of the Bus
Lines

In general, the wiring must be so chosen that
crosstalk and interference to/from the bus
lines is minimized. The bus lines are most
susceptible to crosstalk andinterference at
the HIGH level because of the relatively high
impedance of the pull-up devices.

If the length of the bus lines on a PCB or
ribbon cable exceeds 10 cm and includes
the Vpp and Vgg lines, the wiring pattern
must be:

SDA

Vop.

Vss
SCL

If only the Vgg line is included, the wiring
pattern must be:

SDA

Vss
SCL

These wiring patterns also result in identical
capacitive loads for the SDA and SCL lines.
The Vgs and Vpp lines can be omitted if a
PCB with a Vgg and/or Vpp layer is used.

If the bus lines are twisted-pairs, each bus
line must be twisted with a Vgg return.
Alternatively, the SCL line can be twisted with
a Vgg return, and the SDA line twisted with a
Vpp return. In the latter case, capacitors must
be used to decouple the Vpp line to the Vgg
line at both ends of the twisted pairs.

If the bus lines are shielded (shield
connected to Vgg), interference will be
minimized. However, the shielded cable must
have low capacitive coupling between the
SDA and SCL lines to minimize crosstalk.

16.4 Maximum and Minimum
Values of Resistors R, and R for
Fast-Mode I2C-Bus Devices

The maximum and minimum values for
resistors Ry, and R connected to a fast-mode
12C-bus can be determined from Fig.25, 26
and 28 in Section 10.1. Because a fast-mode
12C-bus has faster rise times (ig) the
maximum value of R;, as a function of bus
capacitance is less than that shown in Fig.27
The replacement graph for Fig.27 showing
the maximum value of Rp, as a function of bus
capacitance (Cyp) for a fast mode 12C-bus is
given in Fig.38.

Philips Semiconductors

The 12C-bus and how to use it

Table 4. Characteristics of the SDA and SCL Bus Lines for 12C-Bus Devices

Parameter Symbol Standard-mode Fast-mode Unit
12C-bus 12C-bus
Min. Max. Min. Max.

SCL clock frequency fscL 0 100 0 400 kHz
Bus free time between a STOP and START condition taur 4.7 - 1.3 - us
Hold time (repeated) START condition. After this period, the first | tp;s7A 4.0 - 0.6 - us
clock pulse is generated
LOW period of the SCL clock tLow 47 - 1.3 - us
HIGH period of the SCL clock tHIGH 4.0 - 0.6 - us
Set-up time for a repeated START condition tgu;STA 47 - 06 - us
Data hold time: tHD;DAT 5.0 - - - ps
for CBUS compatible masters (see NOTE, Section 9.1.3) ol . o 0.92) us
for 12C-bus devices
Data set-up time tsu;pAT 250 - 1009 - ns
Rise time of both SDA and SCL signals tr - 1000 20 + 0.1Cp¥ 300 ns
Fall time of both SDA and SCL signals tr - 300 20 + 0.1Cp%) 300 ns
Set-up time for STOP condition tsu:sTo 4.0 - 0.6 - us
Capacitive load for each bus line Cp - 400 - 400 pF

NOTES:
All values referred to Vi min. @nd V| max. levels (see Table 3).

1. Adevice must internally provide a hold time of at least 300 ns for the SDA signal (referred to the Vi min. Of the SCL signal) in order to

bridge the undefined region of the falling edge of SCL.

2. The maximum typ;par has only to be met if the device does not stretch the LOW period (tLow) of the SCL signal.

3. A fast-mode I2C-bus device can be used in a standard-mode 12C-bus system, but the requirement tgy;pat =250 ns must then be met. This
will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period
of the SCL signal, it must output the next data bit to the SDA line tg max. + tsu;pat = 1000 + 250 = 1250 ns (according to the standard-mode

12C-bus specification) before the SCL line is released.
4. Cp = total capacitance of one bus line in pF.

VoD
';;f Voo
P1 to input
R1 circuit
ct
B S0t o SDA or SCL
bus line
N1 2pF
l:ﬂ :ﬁ N2
Vss T
Vss

Figure 35. Slope-Controlled Output Stage in CMOS Technology

R1

20 k2 c1

to input
circuit

T Jw

SDA or SCL

L]
5pF

T
|

——

GND T

bus fine:

Vss

Figure 36. Slope-Controlled Output Stage in Bipolar Technology

January 1992

55

Philips Semiconductors

The I2C-bus and how to use it

ny Voo

1/4 HCT4066 .
- { Voo 5V410%
Nq

P
!

nz |[GND
1.3k | | Rp2 17mUnm
SDA or SCL
bus line
<1000 | |Rs <1000 |Rsg
170 10
N v R
= = max.
N N
Vss

FAST MODE I2C BUS DEVICES

Figure 37. Switched Pull-Up Circuit

valu.e Rp
ka) = 6o 0
45 Q\

e Rs-¢

P

|__mox Rg
@Vpp-5V \§\

0 100 200 500 aor:

bus capacitance (pF)

Figure 38. Maximum Value of Rp as a Function of Bus Capacitance for Meeting the tr Max requirement for a Fast-Mode 12C-Bus

17.0 DEVELOPMENT TOOLS
17.1 Development tools for 8048 and 8051-based systems

Product Description

OM1016 | 12C-bus demonstration board with microcontroller, LCD, LED, Par. /O, SRAM, EEPROM, Clock, DTMF generator, AD/DA
conversion, infrared link.

OM1018 | manual for OM1016

OM1020 [LCD and driver demonstration board

OM4151 | 12C-bus evaluation board (similar to OM1016 above but without infrared link).

17.2 Development tools for 68000-based systems

Product Description

OM4160 | Microcore-1 demonstration/evaluation board:
SCC68070, 128K EPROM, 512K DRAM, 12C, RS-232C, VSC SCC66470, resident monitor

OM4160/3 | Microcore-3 demonstration/evaluation board:
93C110, 128K EPROM, 64K SRAM, I2C, RS-232C, 40 I/0, resident monitor

17.3 Development tools for all systems

Product Description

OM1022 |I2C-bus analyzer.
Hardware and software (runs on IBM or compatible PC) to experiment with and analyze the behaviour of the I2C-bus (includes
documentation)

January 1992 56

Philips Semiconductors

The 12C-bus and how to use it

18.0 SUPPORT LITERATURE

Data handbooks

1C01 1992: Semiconductors for radio and audio systems

1C02 1992: Semiconductors for television and video systems

1C03 1993: Semiconductors for telecom systems

1C14 1992: 8048-based 8-bit microcontrollers

1C20 1994: 8051-based 8-bit microcontrollers

Brochures/leaflets

Microcontrollers and microprocessors for embedded control applications

12G-bus compatible ICs and support overview

12C-bus control programs for consumer applications

Software
protocols

Hardware
protocols

KEYBOARD LOCATOR TEXT REAL-TIME
PR CONTROL
otocoL | fProtocoL| | pRoTOCOL SonTmoL
[] T T
I
A
PROTOCOL
12C
PROTOCOL

_

Figure 39. ACCESS.bus Protocol Hierarchy

19.0 APPLICATION OF THE
12C-BUS IN THE ACCESS.bus
SYSTEM

The ACCESS.bus (bus for connecting
ACCESSory devices to a host system) is an
12C-bus based open-standard serial
interconnect system jointly developed and
defined by Philips Semiconductors and
Digital Equipment. Corporation. Itis a
lower-cost alternative to an RS-232C
interface for connecting up to 14
inputs/outputs from peripheral equipment to a
desk-top computer or workstation over a
distance of up to eight metres. The peripheral
equipment can be relatively low speed items
such as keyboards, hand-held image
scanners, cursor positioners, bar-code
readers, digitizing tablets, card readers or
modems.

Al that's required to implement an
ACCESS.bus is an 8051-family

January 1992

microcontroller with an 12C-bus interface, and
a 4-wire cable carrying a serial data (SDA)
line, a serial clock (SCL) line, a ground wire
and a 12 V supply line (500 mA max.) for
powering the peripherals.

Important features of the ACCESS.bus are
that the bit rate is only about 20% less than
the maximum bit rate of the 12C-bus, and the
peripherals don’t need separate device
drivers. Also, the protocol allows the
peripherals to be changed by ‘hot-plugging’
without re-booting.

As shown in Fig.39, the ACCESS.bus
protocol comprises three levels: the 12C-bus
protocol, the base protocol, and the
application protocol.

The base protocol is common to all

ACCESS .bus devices and defines the format
of the ACCESS.bus message. Unlike the
12C-bus protocol, it restricts masters to
sending and slaves to receiving data. One

57

item of appended information is a checksum
for reliability control. The base protocol also
specifies seven types of control and status
messages which are used in the system
configuration which assigns unique
addresses to the peripherals without the need
for setting jumpers or switches on the
devices.

The application protocol defines the message
semantics that are specific to the three
categories of peripheral device (keyboards,
cursor locators, and text devices which
generate character streams e.g. card
readers) which are at present envisaged.

Philips Semiconductors offers computer
peripheral equipment manufacturers
technical support, a wide range of [2C-bus
devices and development kits for the
ACCESS.bus. Hardware, software and
marketing support is also offered by DEC.

Philips Semiconductors

L
I2C peripheral selection guide

e,

GENERAL PURPOSE ICs

LCD Drivers

PCF8566 96-segment LCD driver
1:1 - 1:4 Mux rates

PCF8567 LCD direct mode driver

PCF8568 LCD row driver for dot
matrix displays

PCF8569 LCD Column driver for dot
matrix displays

PCF8576 160-segment LCD driver

1:1 - 1:4 Mux rates

PCF8577C 64-segment LCD driver
. 1:1 —1:2 Mux Rates

PCF8578/79 Row/column LCD
dot-matrix driver/display
1:8 — 1:32 Mux rates

LED Drivers

SAA1064 4-digit LED driver

/O Expanders

PCF8574/A 8-bit remote 1/0 port
(12C-bus to parallel
converter)

PCF8584 8-bit parallel to 12C
converter

SAA1300 5-bit high-current driver

Data Converters

PCF8591 4-channel, 8-bit Mux ADC +
one DAC
TDAB8442 Quad 6-bit DAC
TDAB8444 Octal 6-bit DAC
Memory
PCA8581 128-byte EEPROM
PCF8570/C 256-byte static RAM
PCF8571 128-byte static RAM
PCF8582 256-byte EEPROM
PCF8583 256-byte
RAM/clock/calendar
PCF8594 512-byte EEPROM
PCF8598 1K-byte EEPROM
Clocks/Calendars
PCF8573 Clock/calendar
PCF8583 Clock/calendar/
256-byte RAM
68000-Based CMOS
Microcontrollers
68070 68000 CPU/MMU/UART/
DMA/timer
93CXXX UST/I2C/34k ROM/
512 RAM

March 1995

80C51-Based CMOS
Microcontrollers*

83CL267/167
83CL268/168
8XCL410

8XC528
8XC542

8XC552

8XCL580

8XC652

8XC654

8XC751
8XC752

8048 Instruction-Set Based CMOS

12k ROM, 256 RAM OSD
12k ROM, 256 RAM OSD

4k ROM/128 RAM,
low power

32k ROM/512 RAM, T2, WD

4k ROM/128 RAM,
ACCESS.bus

256-byte RAM/8k ROM/
ADC/UART/PWM

6k ROM, 256 RAM,
low power

256-byte RAM/8k ROM,
UART

256-byte RAM/16kROM,
UART

64-byte RAM/2k ROM

64-byte RAM/2k ROM,
ADC/PWM

Microcontrollers

PCF84C00 256-byte RAM/bond-out
version for prototype
development

PCF84C21 64-byte RAM/2k ROM

PCF84C41 128-byte RAM/2k ROM

PCF84C81 256-byte RAM/8k ROM

PCF84C85 256-byte RAM/8k ROM/
Extended /0

PCF84C430 128-byte RAM/4k ROM/
96-segment LCD driver

MULTIMEDIA ICs

Desktop Videos

SAA7151B 8-bit digital multistandard
TV decoder

SAA7152 Digital comb filter

SAA7157 Clock signal generation
circuit for digital video
systems; for use with
SAA71xx

SAA7165 Video enhancement and
D/A processor including
digital CTI

SAA7186 Digital video scaler

SAA7191 Digital multistandard TV
decoder, square pixel

SAA7191B SAA7191 variant

SAA7192A Digital colour space
converter with independent
LHT

SAA7199B digital multistandard

encoder

58

SAA9051 Digital multistandard
(PAL/NTSC) colour
decoder

SAA9056 Digital SECAM colour
decoder

SAA9057B Clock signal generation
circuit for digital video
systems; for use with
SAA90xx

SAA9065 Video enhancement and
D/A processor

TDA4680 Video processor

TDA8440 Video/audio switch

Video/Radio/Audio

SAA4700 VPS dataline processor

SA5751 Audio Processor/Filter
Controller

SAA5243 Computer controlled text
circuit

SAA5246 Computer controlled text
circuit

SAA5248 Integrated teletext decoder
and VPS slicer

SAA5252 Closed caption

SAA7158 Line frequency processor
and DAC circuit

SAA7194 Digital video decoder/scaler

SAA9042 Digital video teletext
(DVTB) processor

SAB3035/36/37 Digital tuning circuits for
computer-controlled TV

TDA1551 2 X 22W BTL audio power
amp

TDA1551Q 2 X 22W BTL audio power
amp with diagnostic

TDA4670 Picture signal improvement
circuit

TDA4671 Picture signal improvement
circuit

TDA4681 Video processor with
automatic cut-off and white
level control

TDA4685 Video processor

TDA4686 Video processor (100 Hz)

TDA4687 Video processor

TDA8415 TV/VCR stereo/dual sound
processor

TDA8416 TV/VCR stereo/dual sound
processor

TDA8417 TV/VCR stereo/dual sound
processor

TDA8421 Audio processor with a
loudspeaker channel and a
headphone channel

TDA8425 Audio processor with a
loudspeaker channel only

TDA8426 Hi-fi stereo audio processor

TDA8433 TV deflection processor

TDA8540 4x4 video switch matrix

Philips Semiconductors

[2C peripheral selection guide

Video/Radio/Audio (Continued)

TDA9140

TEA6320

TEA6330
TSA6060

TDA8433
TDA8442
TDA8443/A
TDA8461

TDA8466

TDA9150
TDA9860
TEA6100

TEA6300

TSA5511/12/14

TSA6057

*

Alignment-free
multistandard decoder

4 input Tone/volume
controller with fader control

Tone/volume controller

A/M Frequency Synthesizer
for RDS.

Deflection processor
Interface for color decoders
YUV/RGB matrix switch
PAL/NTSC color decoder
and RGB processor
PAL/NTSC color decoder
and RGB processor
Deflection processor
Sound controller w/ 4 inputs
FM/IF and digital tuning IC
for computer-controlled
radio

Sound fader control and
preamplifier/source selector
for car radio

PLL frequency synthesizer
for TV

PLL frequency synthesizer
for radio

Telecom
NE5750/51
NE5752

NE5753

PCD3311/12

PCD3341

PCD3343

PCD3348

PCDA4440

UMA1000T

UMA1014T

UMF1009

Also available with extended temperature ranges.

Audio processor pair

3V 5750 variant (samples
Q4 92)

3V 5751 variant (samples
Q4 92)

Tone generator
(DTMF/modem/musical)

Advanced 10 to
110-number repertory
dialer with LCD control

Microcontroller with
224-byte RAM/3k ROM

Microcontroller with
256-byte RAM/8k ROM

Analog voice
scrambler/descrambler

Data processor for mobile
telephones

1GHz frequency
synthesizer for mobile
telephones

Frequency synthesizer

FOR FURTHER INFORMATION ON THESE DEVICES, REFER TO /°C-PERIPHERALS FOR
MICROCONTROLLERS DATA HANDBOOK, AVAILABLE FROM YOUR LOCAL PHILIPS
SEMICONDUCTORS SALES OFFICE (SEE INSIDE BACK COVER OF THIS BOOK).

March 1995

59

Philips Semiconductors Preliminary specification

I2C bus extender 82B715
DESCRIPTION PIN CONFIGURATIONS
The 82B715 is a bipolar integrated circuit
intended for application in 12C bus systems. 8-Pin Dual In-Line or SO
82B715

While retaining all the operating modes and
features of the I2C system it permits

extension of the practical separation distance Vee
between components on the 12C bus by Ly
buffering both the data (SDA) and the clock sy
(SCL) lines. NG

The I2C bus capacitance limit of 400pF
restricts practical communication distances to
a few meters. Using one 82B715 at each end Suoo290
of longer cables reduces the cable loading
capacitance on the 12C bus by a factor of 10
times and may allow the use of low cost

general purpose wiring to extend bus lengths. PINNING

PIN | SYMBOL FUNCTION
1 |N.C.
'0: IE)ﬁ:-l,l;:iiEresctional, unity voltage gain g ;X Ileéﬁgred Bus, LDA orLC1.
buffer X us, SDA or SCL
4 |GND Negative Supply
® |2C bus compatible 5 INC.
® Logic signal levels may include both supply 6 |Sy 12C Bus, SCL or SDA
and ground 7 |Ly Buffered Bus, LCL or LDA
® X10 impedance transformation 8 |Vec Positive Supply
© Wide supply voltage range
QUICK REFERENCE DATA
LIMITS
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
Vee Supply voltage 4.5 12 \'
lcc Quiescent current 16 mA
line Output sink capability 30 mA
Vin Input voltage range 0 Vee \
Vout Output voltage range 0 Vee v
Zin/Zout Impedance transformation 8 10 13
Tamb Temperature range —40 +85 °C
ORDERING INFORMATION
DESCRIPTION ORDER CODE DRAWING NUMBER
8-Pin Plastic Dual In-Line (N/P) Package P82B715P N SOT97
8-Pin Plastic SOL (Small Outline Large) Dual In-Line (D/T) Package P82B715T D SOT96A
82B715 is available in chip form

1992 Dec 09 60

Philips Semiconductors

Preliminary specification

I2C bus extender

82B715

FUNCTIONAL DESCRIPTION
The 82B715 bipolar integrated circuit
contains two identical buffer circuits which
enable 12C and similar bus systems to be
extended over long distances without
degradation of system performance or
requiring the use of special cables.

The buffer has an effective current gain of ten
from I2C bus to Buffered bus. Whatever
current is flowing out of the 12C bus side, ten
times that current will be flowing into the
Buffered bus side (see Figure 2).

As a consequence of this amplification the
system is able to drive capacitive loads up to
ten times the standard limit on the Buffered
bus side. This current based buffering

approach preserves the bi-directional,
open-collector/open-drain characteristic of
the 12C SDA/SCL lines.

To minimize interference and ensure stability,
current rise and fall rates are internally
controlled.

APPLICATION NOTES

By using two (or more) 82B715 ICs, a
sub-system can be built which retains the
interface characteristics of an I12C device so
that it may be included in, or optionally added
to, any 12C or related system.

The sub-system features a low impedance or
“Buffered” bus, capable of driving large wiring
capacities (see Figure 3).

I12C Systems

As with the standard I12C system, pull-up
resistors are required to aprovide the logic
HIGH levels on the Buffered bus. (Standard
open-collector configuration of the I12C bus).
The size and number of these pull-up
resistors depends on the system.

If the buffer is to be permanently connected
into the system, the circuit should be
configured with only one pull-up resistor on
the Buffered bus and none on the 12C bus.

Alternatively a buffer may be connected to an
existing 12C system. In this case the Buffered
bus pull-up will act in parallel with the I12C bus
pull-up.

Vee
82B715
SDA - BUFFER - LDA
scL > BUFFER LoL
GND
SU00291
Figure 1. Block Diagram: 82B715
Vee © l
'8 CURRENT 10 (1g)
12cBUS O - SENSE -0 BUFFERED BUS
Sx Lx
l/
N
GND ©
SU00292

1992 Dec 09

Figure 2. Equivalent Circuit: One Half 82B715

61

Philips Semiconductors Preliminary specification
I2C bus extender 82B715
’ 82B71 veo I 1 82B715 l
| r——=—n | | === | r—— 1
[Dy~ LDA I | soa_| I
SDA 112 <>
I e | | | |
| | | gvee I one [I | opevice |
| [|
soL¢ } [,} : $— —> LeL | Il scL | :
| L—— 4 | | L—— 1 | L—— 1
| | |
STANDARD BUFFERED BUFFERED STANDARD
12c INTERFACE INTERFACE 12c
INTERFACE INTERFACE
SU00293
Figure 3. Minimum Sub-System with 82B715
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134).
Voltages with respect to pin GND (DIL-8 pin 4).
LIMITS
SYMBOL PARAMETER MIN. MAX. UNIT
Vce to GND Supply voltage range Ve -0.3 +12 \%
Vbus Voltage range 12C Bus, SCL or SDA 0 Vee \Y
Vbuff Voltage range Buffered Bus 0 Vece \%
| DC current (any pin) 60 mA
Piot Power dissipation 300 mwW
Tstg Storage temperature range -55 +125 °C
Tamb Operating ambient temperature range —40 +85 °C
CHARACTERISTICS
At Tamb = +25°C and Vg = 5 Volts, unless otherwise specified.
LIMITS
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
Power Supply
Vee Supply voltage (operating) 4.5 — 12 \
lcc Supply current -_ 16 - mA
lcc Supply current at Vg = 12V — 22 — mA
lce Supply current, both 12C inputs LOW, —_ 28 — mA
both buffered outputs sinking 30mA.
Drive Currents
Isx. lsy Output sink on 12C bus 3 — — mA
Vgx, Vgy LOW = 0.4V
Vix, Viy LOW on Buffered bus = 0.3V
I Iy Output sink on Buffered bus 30 — — mA
Vix, Viy LOW = 0.4V
Vsx, Vsy LOW on I2C bus = 0.3V
Input Currents
Isx lsy Input current from 12C bus when — — 3 mA
ILx, ILy sink on Buffered bus = 30mA
I Iny Input current from Buffered bus when ‘- — 3 mA
Isx, Isy sink on I2C bus = 3mA
I Iy Leakage current on Buffered bus — — 200 A
Vix, Viy = Vce, and Vgy, Vsy = Vee
Impedance Transformation
ZinfZ ot l Input/Output impedance L 8 10 13

1992 Dec 09

62

Philips Semiconductors

Preliminary specification

I2C bus extender

82B715

Pull-Up Resistance Calculation

In calculating the pull-up resistance values,
the gain of the buffer introduces scaling
factors which must be applied to the system
components. Viewing the system from the
Buffered bus, all I2C bus capacitances have
effectively 10 times their 12C bus value.

In practical systems the pull-up resistance is
determined by the rise time limit for I2C
systems. As an approximation this limit will
be satisfied if the time constant (product of
the net resistance and net capacitance) of the
total system is set to 1 microsecond.

The total time constant may either be set by
considering each bus node individually (i.e.,
the 12C nodes, and the Buffered bus node)
and choosing pull-up resistors to give time
constants of 1 microsecond for each node; or
by combining the capacitances into an
equivalent capacitive loading on the Buffered
bus, and calculating the Buffered bus pull-up
resistor required by this equivalent
capacitance.

For each separate bus the pull-up resistor
may be calculated as follows:
R = 1usec
Cdevice + Cwiring
Where: Cgevice = sum of device capacitances
connected to each bus,

1992 Dec 09

and Cyjiring = total wiring and stray
capacitance on each bus.

If these capacitances are not known then a
good approximation is to assume that each
device presents 10pF of load capacitance
and 10pF of wiring capacitance.

The capacitance figures for one or more
individual 12C bus nodes should be multiplied
by a factor of 10 times, and then added to the
Buffered bus capacitance. Calculation of a
new Buffered bus pull-up resistor will alllow
this single pull-up resistor to act for both the
included I2C bus nodes and the Buffered bus.
Thus it is possible to combine some or all of
these separate pull-up resistors into a single
resistor on the Buffered bus (the value of
which is calculated from the sum of the
scaled capacitances on the Buffered bus). If
the buffer is to be permanently connected
into the system then all the separate pull-up
resistors should be combined. But if it is to be
connected by adding it onto an existing
system, then only those on the additional 12C
bus system can be combined onto the
Buffered bus if the original system is required
to be able to still operate on a stand-alone
basis.

A further restriction is that the maximum
pull-up current, with the bus LOW, should not
exceed the 12C bus specification maximum of

63

3maA, or 30mA on the Buffered bus. The
following formula applies:
Ve — 0.4

30mA > Ao

Where: Rp = scaled parallel combination of
all pull-up resistors.

If this condition is met, the fall time
specifications will also be met.

Figure 4 shows typical loading calculations
for the expanded 12C bus.

Sx, Sy, I2C Bus, SDA or SCL
Because the two buffer circuits in the 82B715
are identical either input pin can be used as
the 12C Bus SDA data line, or the SCL clock
line.

Lx, Ly, Buffered Bus, LDA or LCL
On the buffered low impedance line side, the
corresponding output becomes LDA and
LCL.

Vees GND — Positive and
Negative Supply Pins

In normal use the power supply voltages at
each end of the low impedance line should
be comparable. If these differ by a significant
amount, noise margin is sacrificed.

Philips Semiconductors Preliminary specification

[2C bus extender 82B715
EXISTING I PROPOSED BUS EXPANSION
vVee 5V
|
Shi l > R2 Sh3
o [soA 7| b S
“C I
—' LN wa sDA 2c
T
T TN
2c 1
SDA | == 3nF
|
GHND I ov
|
EFFECTIVE CAPACITANCE EFFECTIVE CAPACITANCE EFFECTIVE CAPACITANCE
NEAR I2C DEVICES BUFFERED LINE REMOTE I2C DEVICES
2 x 12C Devices ~ 20pF 1x12C Devices 10pF
Strays 20pF Wiring Cap. 3000pF Strays 10pF
82B715 Buffer 10pF _— 82B715 Buffer 10pF
_ TOTAL CAP. 3000pF —
TOTAL CAP. 50pF . TOTAL CAP. 30pF
12C pull-up Buffered Bus pull-up 12C pull-up
_ lusec _ _ lpsec _ _ lpsec _
R1 = 50pF 20KQ R2 = 3000pF ~ 333Q R3 = 30pF 33KQ
AS AN ADDITION TO AN EXISTING SYSTEM * : ’
= » - R2x 0.1R3 _ R3 not required since
R1=20KQ R2’ = R2 + 0.1R3 3002 buffer always connected
FOR A PERMANENT SYSTEM *:
R1 not required since Ro' = 0.1R1 x R2 x 0.1R3 _ 2600 R3 not required since
buffer always connected 0.1R1 + R2 + 0.1R3 buffer always connected
* NOTE:
R1, R2 and R3 are calculated from the capacitive loading and a 1usec time constant on each bus node. For an addition to an existing
system, R2’ (the new value for R2) is shown as being calculated from the parallel combination of R2 and the scaled value of R3;
while for a permanent system R2, and scaled values of R1 and R3 have been used. Note that this example has used scaled resistor
values and combined the node and cable capacitances.
CHECK FOR MAXIMUM PULL-UP CURRENT:
B-04V _ 47 6ma < 30mA
260 '/OmMA < 30m
SU00294

Figure 4. Typical Loading Calculation: 12C Bus with 82B715

1992 Dec 09 64

Philips Semiconductors

Section 3

I2C Serial Bus
Application Notes & Articles

Application Notes and
Development Tools for
80C51 Microcontrollers

AN422

AN425

AN430

AN433

AN434

AN438
AN444
ETV/AN89004
EIE/AN91007

CONTENTS
Using the 8XC751 microcontroller as an 12C bus master

Interfacing the PCD8584 12C-bus controller to 80C51 family microcontrollers . 85

Using the 8XC751/752 in multimaster I12C applications eveieeee... 104
12C slave routines forthe 83C751c.uveiiieeeaeen e, 140
Connecting a PC keyboard tothe 12C-busooovun.. ... 146
12C routines fOr BXC528vvvvieiteeeeeeie e 164
Using the P82B715 12C extender onlongcables 186
PLM51 12C software interface IIC51 (version 0.5) 206
12C driver routines for 8XC751/2 microcontrollers 215
Programming the 12Cinterfaceouuuieieieeeninn... 269

Philips Semiconductors

Using the 8XC751 microcontroller
as an 12C bus master

DESCRIPTION

The 83C751/87C751 Microcontroller offers the advantages of the
80C51 architecture in a small package and at a low cost. It combines
the benefits of a high-performance microcontroller with on-board
hardware supporting the Inter-Integrated Circuit (12C) bus interface.

The 12C bus, developed and patented by Philips, allows integrated
circuits to communicate directly with each other via a simple
bidirectional 2-wire bus. The comprehensive family of CMOS and
bipolar ICs incorporating the on-chip 12C interface offers many
advantages to designers of digital control for industrial, consumer and
telecommunications equipment. A typical system configuration is
shown in Figure 1.

MICROC%MPUTER

GATE ARRAY

STATIC RAM
OR EEPROM

A/D
CONVERTER

MICROCOMPUTER
B

Figure 1. Typical I2C Bus Configuration

SU00359

Interfacing the devices in an I2C based system is very simple because
they connect directly to the two bus lines: a serial data line (SDA) and
a serial clock line (SCL). System design can rapidly progress from
block diagram to final schematic, as there is no need to design bus
interfaces, and functional blocks on a block diagram correspond to
actual ICs. A prototype system or a final product version can easily be
modified or upgraded by ‘clipping’ or ‘unclipping’ ICs to or from the
bus. The simplicity of designing with the 12C bus does not reduce its
effectiveness; it is a reliable, multimaster bus with integrated
addressing and data-transfer protocols (see Figure 2). In addition, the
12C-bus compatible ICs provide cost reduction benefits to equipment
manufacturers, some of which are smaller IC packages and a
minimization of PCB traces and glue logic.

The availability of microcontrollers like the 83C751, with on-board 12C
interface, is a very powerful tool for system designers. The integrated
protocols allow systems to be completely software defined. Software
development time of different products can be reduced by assembling
a library of reusable software modules. In addition, the multimaster
capability allows rapid testing and alignment of end-products via
external connections to an assembly-line computer.

Application note

AN422

The mask programmable 83C751 and its EPROM version, the
87C751, can operate as a master or a slave device on the 12C small
area network. In addition to the efficient interface to the dedicated
function ICs in the 12C family, the on-board interface facilities I/O and
RAM expansion, access to EEPROM and processor-to-processor
communications.

The multimaster capability of the I12C is very important but many
designs do not require it. For many systems, it is sufficient that all
communications between devices are initiated by a single, master
processor. In this application note, use of the 8XC751 as an 12C bus
master is described. Some of the technical features of the bus and the
83C751’s special hardware associated with the I12C are discussed.
Also included is a software example demonstrating 12C single master
communications. Note that the sample routines are quite general, and
therefore may be transferred easily to many applications.

The discussion of the 12C bus characteristics in this application note is
by-no means complete. Additional information for the 12C bus and the
$83C751 Microcontroller can be found in the Microcontroller Users’
Guide.

THE I2C BUS

The two lines of the 12C-bus are a serial data iine (SDA) and a serial
clock line (SCL). Both lines are connected to a positive supply via a
pull-up resistor, and remain HIGH when the bus is not busy. Each
device is recognized by a unique address—whether itis a
microcomputer, LCD driver, memory or keyboard interface—and can
operate as either a transmitter or receiver, depending on the function
of the device. A device generating a message or data is a transmitter,
and a device receiving the message or data is a receiver. Obviously, a
passive function like an LCD driver could only be a receiver, while a
microcontroller or a memory can both transmit and receive data.

Masters and Slaves

When a data transfer takes place on the bus, a device can either be a
master or a slave. The device which initiates the transfer, and
generates the clock signals for this transfer, is the master. At that time
any device addressed is considered a slave. It is important to note
that a master could either be a transmitter or a receiver; a master
microcontroller may send data to a RAM acting as a transmitter, and
then interrogate the RAM for its contents acting as a receiver—in both
cases performing as the master initiating the transfer. In the same
manner, a slave could be both a receiver and a transmitter.

The I12C is a multimaster bus. It is possible to have, in one system,
more than one device capable of initiating transfers and controlling the
bus (Figure 2). A microcontroller may act as a master for one transfer,
and then be the slave for another transfer, initiated by another
processor on the network. The master/slave relationships on the bus
are not permanent, and may change on each transfer.

scL
= I I [[
MASTER SLAVE MASTER
TRANSMITTER/ ReRBYE TRANSMITTER/ | | 1rfRSTERcn | | TRANSMITTER/
RECEIVER RECEIVER RECEIVER
SU00360

Figure 2. 12C Bus Connection

September 1989

67

Revision date: June 1993

Philips Semiconductors Application note

Using the 8XC751 microcontroller

as an 12C bus master AN422

As more than one master may be connected to the bus, it is possible
that two devices will try to initiate a transfer at the same time.
Obviously, in order to eliminate bus collisions and communications SDA /
chaos, an arbitration procedure is necessary. The 12C design has an
inherent arbitration and clock synchronization procedure relying on
the wired-AND connection of the devices on the bus. In a typical

N\
——

X

| | |
I | |
T I T
I I I
I I |

multimaster system, a microcontroller program should allow it to scL
gracefully switch between master and slave modes and preserve data | DATALINE | CHANGE [
integrity upon loss of arbitration. In this note, a simple case is [D?‘}}?{kﬁig | A?_EQV‘IE‘Bl
presented describing the S83C751 operating as a single master on
SU00361
the bus.
Data Transfers Figure 3. Bit Transfer on the 12C Bus

One data bit is transferred during each clock pulse (see Figure 3). The
data on the SDA line must remain stable during the HIGH period of r—— F——n

the clock pulse in order to be valid. Changes in the data line at this -) summntai /T3
time will be interpreted as control signals. A HIGH-to-LOW transition SDA | \ l - N\ ! | SDA
of the data line (SDA) while the clock signal (SCL) is HIGH indicates a !

T
Start condition, and a LOW-to-HIGH transition of the SDA while SCL - l - | -
is HIGH defines a Stop condition (see Figure 4). The bus is SCL { I I | sCL

considered to be busy after the Start condition and free again ata s | | P |
certain time interval after the Stop condition. The Start and Stop L ot - L——d
conditions are always generated by the master. conR N CORBITON

The number of data bytes transferred between the Start and Stop Suoo362

condition from transmitter to receiver is not limited. Each byte, which
must be eight bits long, is transferred serially with the most significant
bit first, and is followed by an acknowledge bit. (see Figure 5). The
clock pulse related to the acknowledge bitis generated by the
master. The device that acknowledges has to pull down the SDA line
during the acknowledge clock pulse, while the transmitting device
releases the SDA line (HIGH) during this pulse (see Figure 6).

Figure 4. Start and Stop Conditions

ACKNOWLEDGEMENT

SIGNAL FROM RECEIVER
—— _ o F——
SDA : I \ /_\ | |
/ - -—— - +
T — =
scL L s | 1 2____ 3-8 9 I e
— 4 ACK L—_1
START STOP
CONDITION BYTE COMPLETE, CLOCK LINE HELD LOW CONDITION
INTERRUPT WITHIN WHILE INTERRUPT
RECEIVER IS SERVICED
5U00363
Figure 5. Data Transfer on the I12C Bus
——n _
DATA OUTPUT BY
TRANSMITTER | | >< >< ; <——————— TRANSMITTER STAYS OFF OF THE BUS
| - DURING THE ACKNOWLEDGE CLOCK
DATA OUTPUT | [o <«—— ACKNOWLEDGEMENT
BY RECEIVER | | SIGNAL FROM RECEIVER
SCL FROM MASTER [s | 1 2___ 7 8 9
L—— 1 -
START
CONDITION
SU00364

Figure 6. Acknowledge on the I2C Bus

September 1989 68

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an 12C bus master

AN422

A slave receiver must generate an acknowledge after the reception of
each byte, and a master must generate one after the reception of
each byte clocked out of the slave transmitter. If a receiving device
cannot receive the data byte immediately, it can force the transmitter
into a wait state by holding the clock line (SCL) LOW. When
designing a system, it is necessary to take into account cases when
acknowledge is not received. This happens, for example, when the
addressed device is busy in a real time operation. In such a case the
master, after an appropriate “time-out”, should abort the transfer by
generating a Stop condition, allowing other transfers to take place.
“These “other transfers” could be initiated by other masters in a
multimaster system, or by this same master.

There are two exceptions to the “acknowledge after every byte” rule.
The first occurs when a master is a receiver: it must signal an end of
data to the transmitter by NOT signalling an acknowledge on the last
byte that has been clocked out of the slave. The acknowledge related
clock, generated by the master should still take place, but the SDA
line will not be pulled down. In order to indicate that this is an active
and intentional lack of acknowledgement, we shall term this special
condition as a “negative acknowledge”.

The second exception is that a slave will send a negative
acknowledge when it can no longer accept additional data bytes. This
occurs after an attempted transfer that cannot be accepted.

The bus design includes special provisions for interfacing to
microprocessors which implement all of the 12C communications in
software only—it is called “Slow Mode”. When all of the devices on
the network have built-in 12C hardware support, the Slow Mode is
irrelevant.

Addressing and Transfer Formats

Each device on the bus has its own unique address. Before any data
is transmitted on the bus, the master transmits on the bus the address
of the slave to be accessed for this transaction. A well-behaved slave
with a matching address, if it exists on the network, should of course
acknowledge the master’s addressing. The addressing is done by the
first byte transmitted by the master after the Start condition.

An address on the network is seven bits long, appearing as the most
significant bits of the address byte. The last bit is a direction (R/W) bit.
A zero indicates that the master is transmitting (WRITE) and a one
indicates that the master requests data (READ). A complete data

transfer, comprised of an address byte indicating a WRITE and two
data bytes is shown in Figure 7.

When an address is sent, each device in the system compares the
first seven bits after the Start with its own address. If there is a match,
the device will consider itself addressed by the master, and will send
an acknowledge. The device could also determine if in this transaction
itis assigned the role of a slave receiver or slave transmitter,
depending on the R/W bit.

Each node of the I2C network has a unique seven bit address. The
address of a microcontrolier is of course fully programmable, while
peripheral devices usually have fixed and programmable address
portions. In addition to the “standard” addressing discussed here, the
12C bus protocol allows for “general call” addressing and interfacing
to CBUS devices.

When the master is communicating with one device only, data
transfers follow the format of Figure 7, where the R/W bit could
indicate either direction. After completing the transfer and issuing a
Stop condition, if a master would like to address some other device on
the network, it could of course start another transaction, issuing a new
Start.

Another way for a master to communicate with several different
devices would be by using a “repeated start”. After the last byte of the
transaction was transferred, including its acknowledge (or negative
acknowledge), the master issues another Start, followed by address
byte and data—without effecting a Stop. The master may
communicate with a number of different devices, combining READS
and WRITES. After the last transfer takes place, the master issues a
Stop and releases the bus. Possible data formats are demonstrated
in Figure 8. Note that the repeated start allows for both change of a
slave and a change of direction, without releasing the bus. We shall
see later on that the change of direction feature can come in handy
even when dealing with a single device.

In a single master system, the repeated start mechanism may be
more efficient than terminating each transfer with a Stop and starting
again. In a multimaster environment, the determination of which
format is more efficient could be more complicated, as when a master
is using repeated starts it occupies the bus for a long time and thus
preventing other devices from initiating transfers.

SDA: oo
1 l ' 1
! - - - '
' — — 1 1
- [
SCL+ N
! Ll I [
IR Y2 WA VA NIV VA AN NV W WA WA
o 1-7 8 9 1-7 8 9 1-7 8 9 [
\
s | | L |1 il J I | I] P
v- ADDRESS RW ACK DATA ACK DATA ACK [
START STOP
CONDITION CONDITION
SU00365

Figure 7. A Complete Data Transfer on the 12C-Bus

September 1989

69

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an I2C bus master

AN422

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)
MASTER WRITE: \
| s | SLAVE ADDRESS] wla I DATA | A ! DATA | alep I
DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)
MASTER READ: 1
[s | SLAVE ADDRESS | R| A l DATA I A | DATA | NA ;I
(nBYTES + (nBYTES +
ACKNOWLEDGE) ACKNOWLEDGE)
COMBINED FORMATS: Y
[s | SLAVE ADDRESS | RW | A DATA | Als [SLAVE ADDRESS | AW I A DATA | Alp l
DIRECTION OF TRANSFER MAY
S= START CHANGE AT THIS POINT
P= STOP
W= WAITE
R= READ
RMW = READ OR WRITE
MR- A owLebae
SU00366
Figure 8. 12C Data Formats
ACKNOWLEDGE ACKNOWLEDGE ACKNOWLEDGE
FROM SLAVE FROM SLAVE FROM SLAVE
! s I SLAVE ADDRESS | 0 | A | WORD ADDRESS | A DATA A | P |
T A A
— aBYTES —
RW
AUTO-INCREMENT
MEMORY WORD ADDRESS
MASTER TRANSMITS TO SLAVE RECEIVER
(a)
ACKNOWLEDGE ACKNOWLEDGE ACKNOWLEDGE
FROM SLAVE FROM SLAVE FROM fLAVE
I s I SLAVE ADDRESS | 0 I A ’ WORD ADDRESS | A ! s [SLAVE ADDRESS] 1 J A
AW AUTO-INCREMENT
MEMORY WORD ADDRESS
NO ACKNOWLEDGE
; FROM MASTER
DATA A l DATA l 1] P I
A t
MASTER TRANSMITTER BECOMES nBYTES — LAST BYTE
RS
AUTO-INCREMENT
TRANSMITTER MEMORY WORD ADDRESS
MASTER READS AFTER SETTING WORD ADDRESS
(WRITE WORD ADDRESS; READ DATA)
(b)
SU00367

September 1989

Figure 9. I12C Sub-Address Usage

70

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an [2C bus master

AN422

Use of Sub-Addresses

For some ICs on the I2C bus, the device address alone is not
sufficient for effective communications, and a mechanism for
addressing the internals of the device is necessary. A typical example
when we want to access a specific word inside the device is
addressing memories, or a sequence of memory locations starting at
a specific internal address.

A typical 12C memory device like the PCF8570 RAM contains a built-in
word address register that is incremented automatically after each
data byte which is a read or written data byte. When a master
communicates with the PCF8570 it must send a sub-address in the
byte following the slave address byte. This sub-address is the internal
address of the word the master wants to access for a single byte
transfer, or the beginning of a sequence of locations for a multi-byte
transfer. A sub-address is an 8-bit byte, unlike the device address, it
does not contain a direction (R/W) bit, and like any byte transferred on
the bus it must be followed by an acknowledge.

A memory write cycle is shown in Figure 9(a). The Start is followed
by a slave byte with the direction bit set to WRITE, a sub-address
byte, a number of data bytes and a Stop signal. The sub-address is
loaded into the word address memory, and the data bytes which
follow will be written one after the other starting with the sub-address
location, as the register is incremented automatically.

The memory read cycle (see Figure 9(b)) commences in a similar
manner, with the master sending a slave address with the direction bit
set to WRITE with a following sub-address. Then, in order to reverse
the direction of the transfer, the master issues a repeated Start
followed again by the memory device address, but this time with the
direction bit set to READ. The data bytes starting at the internal
sub-address will be clocked out of the device, each followed by a
master-generated acknowledge. The last byte of the read cycle will be
followed by a negative acknowledge, signalling the end of transfer.
The cycle is terminated by a Stop signal.

8XC751 12C HARDWARE

The on-chip 12C bus hardware support of the 8XC751 allows
operation on the bus at full speed, and simplifies the software needed
for effective communications on the network. The hardware activates
and monitors the SDA and SCL lines, performs the necessary
arbitration and framing errors checks, and takes care of clock
stretching and synchronization. The hardware support includes a bus
time-out timer, called Timer |. The hardware is synchronized to the
software either through polled loops or interrupts.

Table 1. 12C Special Function Register Addresses

Two of the port 0 pins are multi-functional. When the 12C is active, the
pin associated with P0.0 functions as SCL, and the pin associated
with P0.1 functions as SDA. These pins have an open drain output.

Two of the five 8XC751 interrupt sources may be used for I2C

support. The 12C interrupt is enabled by the EI2 flag of the interrupt
enable register, and its service routine should start at address 023h.
An [2C interrupt is usually requested (if enabled) when a rising edge of
SCL indicates a new data bit on the bus, or a special condition occurs:
Start, Stop or arbitration loss. The interrupt is induced by the ATN
flag—see below for the conditions for setting this flag. The Timer |
overflow interrupt is enabled by the ETI flag, and the service routine
starts at 01Bh.

The I2C port is controlled through three special function registers: 12C
Control (I2CON), I12C Configuration (I2CFG), and I2C Data (I2DAT).
The register addresses are shown in Table 1.

Although the following discussion of the hardware and register details
is not complete, it should give a better understanding of the
programming examples.

Timer | :

In 12C applications, Timer | is dedicated to the port timing generation
and bus monitoring. In non-12C applications, it is available for use as a
fixed time base.

In its port timing generation function, Timer | is used to generate SCL,
the 12C clock. Timer | is clocked once per machine cycle (osc/12), so
that the toggle rate of SCL will be some muiltiple of that rate. Because
the 83C751 can be run over a wide range of oscillator frequencies, it
is necessary to adjust SCL for the part’s oscillator frequency. This
allows the I2C bus to be used at its highest transfer rates independent
of the oscillator frequency. SCL is adjusted by writing to two bits (CTO
and CT1) in the I2CFG special function register (see Table 2). The
inverse of the values in CTO and CT1 are loaded into the least
significant two bit locations of Timer | every time the fourth bit of the
timer is toggled. (A value is actually loaded into the least significant
three bits, the third bit being 0 unless both CT0 and CT1 are
programmed high and in that case the third bitis 1). SCL is then
toggled every time the fourth bit of Timer | is toggled. For example: if
CT1=0and CTO = 1 then the least significant three bits of Timer |
would be preloaded with 2 (010 binary). Timer | would then count 3, 4,
5, 6, 7, 8 (6 counts or machine cycles). On 8, the fourth bit of Timer |
will toggle, SCL will toggle and the 3 least significant bits will again be
preloaded with the value 2 (010).

REGISTER BIT ADDRESS
Name Symbol Address MSB LSB
12C Control 12CON 98 9F 9E 9D 9C 9B 9A 99 98
12C Data 12DAT 99 - - - - - - - -
12C Configuration 12CFG D8 DF DE DD DC DB DA D9 D8
Table 2. CTO, CT1 Timer | Settings
CT1 Values CTO Values Timer | Counts Oscillator Freq (MHz)
1 0) 7 16
o] 1 6 15, 14,13
0 0 5 12, 11
1 1 4 10 or less
Timer | counts = fogc (MHz) x 0.39 (rounded up to next integer).
September 1989 71

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an I2C bus master

AN422

For the bus monitoring function, Timer | is used as a “watchdog timer”
for bus hang-ups. It creates an interrupt when the SCL line stays in
one state for an extended period of time while the bus is active
(between a Start condition and a following Stop condition). SCL “stuck
low” indicates a faulty master or slave. SCL “stuck high” may mean a
faulty device, or that noise induced unto the 12C caused all masters to
withdraw from the I2C arbitration.

The time-out interval of Timer | is fixed (cannot be set): it carries out
and interrupts (if enabled) when about 1024 machine cycles have
elapsed since a change on SCL within a frame. In other words,
whenever I2C is active and Timer | is enabled, the falling edge of SCL
will reset Timer |. If SCL is not toggled low for 1024 machine cycles,
Timer | will overflow and cause an interrupt. (Note: we wrote “about
1024 machine cycles” although for the sake of accuracy—this number
is affected by the setting of the CTO0 and CT1 bits mentioned above
and may vary by up to three machine cycles) The exact number of
cycles for a time-out is not critical; what is important is that it indicates
SCL is stuck.

In addition to the interrupt, upon Timer | overflow the 12C port
hardware is reset. This is useful for multiple master systems in
situations where a bus fault might cause the bus to hang-up due to a
lack of software response. When this happens, SCL will be released,
and I2C operation between other devices can continue.

I12CON Register

The 12C control register (I2CON) can be written to (see Figure 10).
When writing to the [2CON register, one should use bit masks as
demonstrated in the example program. Trying to clear or set the bits in
the register using the bit addressing capabilities of the 8XC751 may
lead to undesirable results. The reason is that a command like CLR
reads the register, sets the bit and writes it back, and the write-back
may affect other bits.

I2CFG Register
The configuration register (I2CFG) is a read/write register (see
Figure 11).

I2DAT Register

The I2C data register (I2DAT) is a read/write register, where the MSB
represents the data received or data to be sent. The other seven bits
are read as O (see Figure 12).

Transmit Active State

The transmit active state—Xmit Active—is an internal state in the 12C
interface that is affected by the I2C registers as explained above. The
I2C interface will only drive the SDA line low when Xmit Active is set.
Xmit Active is set by writing the I2DAT register, or by writing I2CON
with XSTR = 1 or XSTP = 1. The ARL bit will be set to 1 only when
Xmit Active is set—in such a case Xmit Active will be automatically
reset upon arbitration loss. Xmit Active is cleared by writing 1 to CXA
at I2CON register or by reading the I2DAT register.

12CON READ [RDAT ‘ ATN | DRDY | ARL | STR I STP ’ MASTERI — l
RDAT Received DATa bit. The value of SDA latched by the rising edge of SCL. Its contents is identical to RDAT in the
I2DAT register. Reading the received data here allows doing so without clearing DRDY and releasing SCL.
ATN An “ATteNtion” flag, set when any one of DRDY, ARL, STR or STP is set. This flag allows a single bit testing for
terminating “wait loops”, indicating a meaningful event on the bus. This flag also activates the I“C interrupt request.
DRDY Data ReaDY flag. Set by a rising edge of SCL when I2C is active, except at an idle slave. This flag is cleared by
reading or writing the I12DAT register, or by writing a 1 to CDR (at the same address, when I2CON is written).
ARL ARbitration Loss flag. Indicates that this device lost arbitration while trying to take control of the bus.
STR STaRt flag. Set when a Start condition is detected, except at an idle slave.
STP SToP flag. Set when a Stop condition is detected, except at an idle slave.
MASTER This flag is set when the controller is a bus master (or a potential master, prior to arbitration).
120N WRITE ' CXA | IDLE | CDR | CARL | CSTR | csTP | XSTR | XSTP |
CXA “Clear Xmit Active”. Writing a 1 to CXA clears the internal transmit-active state.
IDLE Setting this bit will cause a slave to enter idle mode and ignore the 12C bus until the next Start is detected. If the
software sets the MASTRQ flag, the device may stop idling by tumning into a master.
CDR Clear Data Ready. Clears the DRDY flag.
CARL Clear Arbitration Lost. Clears the ARL flag.
CSTR Clear STaRt. Clears the STR flag.
CSTP Clear STop. Clears the STP flag.
XSTR “Xmit repeated STaRt". Writing a 1 to this bit causes the hardware to issue a Repeated Start signal. A side effect
will be setting the internal Xmit Active state. This should be used only when the device is a master.
XSTP “Xmit SToP”. Issues a Stop condition. The Xmit active state is set.
SU00368

Figure 10. I2CON Register

September 1989

72

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an 12C bus master

AN422

I SLAVEN l MASTRQ | CLRTI I TIRUN I - | — I CT1 I CTO J
SLAVEN Writing a 1 to this flag enables the slave functions of the 12C interface.
MASTRQ Request control of the bus as a master.
CLRTI Clear the Timer | interrupt flag. This bit is always read as 0.
TIRUN Writing a 1 will let Timer | run. When 12C is active, it will run only inside frames, and will be cleared by SCL
transitions, Start and Stop. Writing a 0 will stop and clear the timer.

CT1,CTO These bits should be programmed according to the frequency of the crystal oscillator used in the hardware. They
determine the minimum high and low times for SCL, and are used to optimized performance at different oscillator
speeds.

SU00369
Figure 11. 12CFG Register
I2DATREADlRDAT]—|—I—|—|—-l—l—l
RDAT Received DATa bit, captured from SDA every rising edge of SCL. Reading I2CAT clears DRDY and the
Xmit Active state. If it is necessary to read the data without affecting the flags, it can be read out of RDAT
in the I2CON register.
12DAT WRITE lXDAT\—I—l—‘—l—l—l—l
XDAT Xmit DATa bit. Writing XDAT determines the data for the next bit to be transmitted on the 12C bus.
Writing I2DAT also clears DRDY and sets the Xmit Active state.
SU00370

Figure 12. 12DAT Register

PROGRAMMING EXAMPLE
The listing demonstrates communications routines for the 8XC751 as
an 12C bus master in a single-master system.

The single-master system is less complicated than a multimaster
environment. The programmer does not have to worry about switching
between master and slave roles, or the consequences of an
arbitration loss.

The I2C interrupt is not used, and therefore disabled. There is no need
for frame Start interrupts, as this processor is the only bus master
and all data transfers are initiated by it when the appropriate routines
are called by the application. No one else generates frame Starts
which could be an interrupt source in a multimaster system. Within the
frames we monitor bus activity with a wait-loop which polis the ATN
flag. As we expect the bus to operate in its full-speed mode, we can
assume that only a small amount of time will be wasted in those
loops, and the use of interrupts would be less efficient.

The 8XC751 has single-bit I2C hardware interface, where the
registers may directly affect the levels on the bus and the software
interacting with the register takes part in the protocol implementation.
The hardware and the low-level routines dealing with the registers are
tightly coupled. Therefore, one should take extra care if trying to
modify these lower level routines.

The beginning of the program, at address 0, contains the reset vector,
where the microcontroller begins executing code after a hardware
reset. In this case, the code simply jumps to the main part of the
program, which begins at the label ‘Reset’ near the end of the listing.

September 1989

73

The main program is a simple demonstration of the 12C routines which
comprise the balance of the listing. It first enables the Timer |
interrupt, and sets up some sample data to be transmitted. Beginning
at the label MainLoop, the program then proceeds to transmit one
byte of data to a slave device at address 48 hexadecimal, using the
routine titled ‘SendData’. In our demonstration hardware, this address
corresponds to an 8-bit I/O port that drives eight monitor LEDs. The
program then reads back one byte of data from the same port using
the routine ‘RevData’. The SendData and RevData routines can send
or receive multiple bytes of data, the number of which is determined
by the variable ‘ByteCnt'.

Upon return from both SendData and RevData, the program checks
the system flag named ‘Retry’ to see if the transfer was completed
correctly. If not, it loops back and attempts the same transfer again.

Next, the program sends four bytes of data to a 256-byte EEPROM
device, an 8-pin part called the PCF8582. The routine ‘SendSub’ is
used for this purpose. The EEPROM was located at address A0
hexadecimal on our board. This device uses the sub-addressing
feature to select a starting location to address in the EEPROM array.
When data is written to the EEPROM, the address is automatically
incremented so that the data bytes are stored in consecutive
locations.

Finally the program reads back four bytes of data from the EEPROM
using the routine ‘RcvSub’. Calls to SendSub and RevSub should also
be followed by a test of the Retry flag to insure that all went according
to plan.

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an 12C bus master

AN422

This entire process is repeated indefinitely by jumping back to
MainLoop.

Back at the beginning of the program, the next location after the reset
vector is the Timer | interrupt service routine. The microcontroller will
go to address 1B hexadecimal if Timer | overflows. This routine stops
the timer, clears the timer interrupt, clears the pending interrupt so
that other interrupts will be enabled, restores the stack pointer, and
jumps to the ‘Recover’ routine to try to correct whatever stopped the
12C bus and allowed Timer | to overflow.

Next in the listing come the main I2C service routines. These are the
routines SendData, RcvData, SendSub, and RevSub that were called
from the main program. Both of the send routines use the data area
labeled XmtDat' as the transmit data buffer. In this sample program,
four bytes were reserved for this area, but it could be larger or
smaller depending on the application. The two receive routines use
another four byte buffer labeled ‘RevDat’ to store received data. All of
these routines use the variables ‘SIvAdr’ and ‘ByteCnt’ to determine
the slave address and the number of bytes to be sent or received,
respectively. The SendSub and RcvSub routines use the variable
‘SubAdr’ as the sub-address to send to the slave device.

Following the main I2C service routines in the listing are the
subroutines that are called by the main routines to deal intimately
with the 12C hardware.

The ‘SendAddr’ subroutine requests mastership of the 12C bus and
calls the routine ‘XmitAddr’ to complete sending the slave address.
The bulk of the XmitAddr routine is shared with the ‘XmitByte’
subroutine which sends data bytes on the 12C bus. XmitByte is also
used to send I2C sub-addresses. Both subroutines check for an
acknowledge from the slave device after every byte is sent on the 12C
bus.

The next subroutine ‘RDAck’ calls the ‘RcvByte’ routine to read in a
byte of data. It then sends an acknowledge to the slave device.
RDAck is used to receive all data except for the last byte of a receive
data frame, where the acknowledge is omitted by the bus master. The
RevByte subroutine is called directly for the last byte of a frame.

The ‘SendStop’ subroutine causes a stop condition on the I12C, thus
ending a frame. The ‘RepStart’ subroutine sends a repeated start
condition on the 12C bus, to allow the master to start a new frame
without first having to send an intervening stop.

The lower level subroutines deal directly with the hardware. The tight
coupling between hardware and software is best demonstrated by the

September 1989

74

following explanations, relating to two cases in which the code is not
self evident.

Sending the Address

When sending the address byte in the Send Addr subroutine, the first
bit is written to I2DAT prior to the loop where the other seven bits are
sent (SendAd2). The reason is that we need to clear the Start
condition in order to release the SCL line, and this is done explicitly by
the subsequent command. When SCL is released, the correct bit
(MSB of address) must already be in 12DAT.

Capturing the Received Data

Typically, a program receiving data waits in a loop for ATN, and when
detected, checks DRDY. If DRDY = 1 then there was a rising SCL,
and the new data can be read from RDAT in I2CON or I2DAT.
Reading or writing I2DAT clears DRDY, thus releasing SCL.

When reading the last bit in a byte, it should be read from I2CON, and
not I2DAT (see the end of the RcvByte routine). This way the Data
Ready (DRDY) flag is not cleared, and the low period on SCL is
stretched. The reason for doing so is that upon reception of the last bit
of a received byte the master must react with an acknowledge. In
order to ensure that we “wait” with the acknowledge clock (release of
SCL) until the acknowledge level is issued on SDA, the last bit is read
out of I2CON and not I2DAT. SCL is stretched low until the
acknowledge level is written into I2DAT by the software.

Bus Faults and Other Exceptions

Bus exceptions are detected either by Timer | time-out, or “illegal”
logic states tested for and detected by the software. Upon Timer |
time-out, a bus recovery is attempted by the Recover routine. The
final section of the listing is this ‘Recover’ routine. Its job is to try to
restore control of the 12C bus to the main program. First, the
subroutine ‘FixBus’ is called. It checks to see if only the SDA line is
‘stuck’, and if so, tries to correct it by sending some extra clocks on
the SCL line, and forcing a stop condition on the bus. If this does not
work, another subroutine 'BusReset’ is called. This generally happens
when a severe bus error occurs, such as a shorted clock line. The
philosophy used in this code is that the only chance of recovering
from a severe error is to cause a reset of the I'C hardware by
deliberately forcing Timer | to time out. This method allows recovery
from a temporary short or other serious condition on the I2C bus.

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an 12C bus master

AN422

I2CAPP

0002

0010
0040

0080
0040
0020
0010
0008
0004
0002
0001

0021
0022
0023
0024

0025

0029

002D

0020
0000
0001
0002

0080
0081

September 1989

83C751 Single Master I2C Routines 09/07/89
1
2 ;***
3 i
4 B Sample I2C Single Master Routines for the 83C751
7
8 STITLE(83C751 Single Master I2C Routines)
9 $SDATE(09/07/89)
10 $MOD751
11 $SDEBUG
12
13
14 ; Value definitions.
15
16 CTVAL EQU 02h ;CT1, CTO bit values for I2C.
17
18
19 ; Masks for I2CFG bits.
20
21 BTIR EQU 10h ;Mask for TIRUN bit.
22 BMRQ EQU 40h ;Mask for MASTRQ bit.
23
24
25 ; Masks for I2CON bits.
26
27 BCXA EQU 80h ;Mask for CXA bit.
28 BIDLE EQU 40h ;Mask for IDLE bit.
29 BCDR EQU 20h ;Mask for CDR bit.
30 BCARL EQU 10h ;Mask for CARL bit.
31 BCSTR EQU 08h ;Mask for CSTR bit.
32 BCSTP EQU 04h iMask for CSTP bit.
33 BXSTR EQU 02h ;Mask for XSTR bit.
34 BXSTP EQU 01lh ;Mask for XSTP bit.
35
36
37 ; RAM locations used by I2C routines.
38
39 BitCnt DATA 21h ;I2C bit counter.
40 ByteCnt DATA 22h
41 SlvAdr DATA 23h ;Address of active slave.
42 SubAdr DATA 24h
43
44 RcvDat DATA 25h ;I2C receive data buffer (4 bytes).
45 ; addresses 25h through 28h.
46
47 XmtDat DATA 2%h ;I2C transmit data buffer (4 bytes).
48 ; addresses 29%h through 2Ch.
49
50 StackSave DATA 2Dh ;Saves stack addr for bus recovery.
51
52 Flags DATA 20h ;I2C software status flags.
53 NoAck BIT Flags.0 ;Indicates missing acknowledge.
54 Fault BIT Flags.l ;Indicates a bus fault of some kind.
55 Retry BIT Flags.2 ;Indicates that last I2C transmission
56 ; failed and should be repeated.
57
58 SCL BIT P0.0 ;Port bit for I2C serial clock line.
59 SDA BIT P0.1 ;Port bit for I2C serial data line.
60
75

Philips Semiconductors

Application note

Using the 8XC751 microcontroller

as an 12C bus master

AN422

0000

001B

001B
001D
001F
0021

0024
0026

0027
0029
002B
002D

0030
0032
0034

0037
003a

003C
003D
003E
0040

0043
0046

0049
004B

004c

21E1

D2DD
C2DC
1126
852D81

218A
32

C200
c201
C202
85812D

E523
310¢C
200012

200112
7829

E6

08
3125
200006

200106
D522F3

3166
22

218A

September 1989

73
74
75
76

93
94
95

96
97

98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114

PR R I I

;

; Reset and interrupt vectors.

; A timer I timeout usually indicates a ‘hung’ bus.

TimerI:

ClriInt:

R R R R AR I T I T I,

i

AJMP

ORG

SETB
CLR
ACALL
Mov

AJMP
RETI

Reset

1Bh

CLRTI
TIRUN
ClriInt
SP, StackSave

Recover

; Send data byte(s) to slave.

; Enter with slave address in SlvAdr, data in XmtDat buffer,

Begin Code

PR Kk kR K Kk R A K Ak ok kK kK R A AR A A XA AR AR ARk kk ok h Ak kA kh ok kR kK ko ke k&

iReset vector at address 0.

;Timer I (I2C timeout)

; interrupt.

;iClear timer I interrupt.

;Clear interrupt pending.
iRestore stack for return

; to main.

;Attempt bus recovery.

Main Transmit and Receive Routines
;*t***

; # of data bytes to send in ByteCnt.

SendData:

SDLoop :

SDEX:

CLR
CLR
CLR
MoV

MoV
ACALL
JB

JB
Mov

MoV
INC
ACALL
JB

JB
DJINZ

ACALL
RET

NoAck
Fault
Retry
StackSave, SP

A, S1lvAdr
SendAddr
NoAck, SDEX

Fault, SDatErr
RO, #XmtDat

A,@RO

RO
XmitByte
NoAck, SDEX

Fault, SDatErr
ByteCnt, SDLoop

SendStop

; Handle a transmit bus fault.

SDatErr:

115
116

117

i
i
i

i

AJMP

Recover

;iClear error flags.

;Save stack address
for bus fault.
;Get slave address.
;Get bus and send slave addr.
;iCheck for missing

; acknowledge.

;iCheck for bus fault.
iSet start of transmit

; buffer.

;Get data for slave.

;Send data to slave.
iCheck for missing

; acknowledge.

iCheck for bus fault.

;Send an I2C stop.

;Attempt bus recovery.

Receive data byte(s) from slave.

Enter with slave address in SlvAdr,
of data bytes requested in ByteCnt.
Data returned in RcvDat buffer.

76

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an 12C bus master

AN422

118
004E €200 119 RcvData: CLR NoAck ;Clear error flags.
0050 €201 120 CLR Fault
0052 €202 121 CLR Retry
0054 85812D 122 MOV StackSave, SP ;Save stack address
; for bus fault.
0057 E523 123 MOV A, S1lvAdr ;Get slave address.
0059 D2EO 124 SETB ACC.0 ;Set bus read bit.
005B 310C 125 ACALL SendAddr ;Send slave address.
005D 200023 126 JB NoAck, RDEX ;Check for missing
; acknowledge.
0060 200123 127 JB Fault,RDatErr ;Check for bus fault.
128
0063 7825 129 MOV RO, #RcvDat ;Set start of receive
; buffer.
0065 D52202 130 DJINZ ByteCnt, RDLoop ;Check for count = 1
; byte only.
0068 800A 131 SJIMP RDLast
132
006A 3143 133 RDLoOD : ACALL RDAck ;Get data and send
; an acknowledge.
006C 200117 134 JB Fault,RDatErr ;Check for bus fault.
006F F6 135 MOV @RO,A ;jSave data.
0070 08 136 INC RO
0071 D522F6 137 DJINZ ByteCnt, RDLoop ;Repeat until last
; byte.
138
0074 314F 139 RDLast: ACALL RcvByte ;Get last data byte
; from slave.
0076 20010D 140 JB Fault,RDatErr ;Check for bus
; fault.
0079 F6 141 MOV @RO,A ;Save data.
142
007A 759980 143 MOV I2DAT, #80h ;Send negative
; acknowledge.
007D 309EFD 144 JNB ATN, $;Wait for NAK sent.
0080 309D03 145 JNB DRDY, RDatErr ;iCheck for bus
; fault.
146
0083 3166 147 RDEX: ACALL SendStop ;Send an I2C bus
; stop.
0085 22 148 RET
149
150
151 ; Handle a receive bus fault.
152
0086 218A 153 RDatErr: AJMP Recover ;Attempt bus recovery.
154
155
156 ; Send data byte(s) to slave with subaddress.
157 ; Enter with slave address in ACC, subaddress in
; SubAdr, # of bytes to send in ByteCnt,
158 ; data in XmtDat buffer.
159
0088 C200 160 SendSub: CLR NoAck ;Clear error flags.
008A C201 161 CLR Fault
008C €202 162 CLR Retry
008E 85812D 163 MOV StacksSave, SP ;Save stack address
; for bus fault.
0091 E523 164 MOV A,SlvAdr ;Get slave address.
0093 310C 165 ACALL SendAddr ;Get bus and send

; slave address.

September 1989 7

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an I2C bus master

AN422

0095 20001C

0098 20011C

009B E524
009D 3125
009F 200012

00A2 200112
00A5 7829

00A7 E6
00A8 08
00A9 3125
00AB 200006

00AE 200106
00B1 D522F3

00B4 3166
00B6 22

00B7 218A

00B9 C200
00BB C201
00BD C202
00BF 85812D

00C2 ES523
00Cc4 310C
00C6 20003E
00C9 20013E
00CC E524
00CE 3125
00D0 200034
00D3 200134
00D6 317A
00D8 20012F
00DB E523
00DD D2EO
00DF 3115
00E1 200023
00E4 200123
00E7 7825

00E9 D52202

September 1989

166

167

168
169
170
171

172
173

174
175
176
177
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192

193
194
195
196
197
198

199
200
201

202
203
204
205
206

207
208
209
210
211
212
213
214

215
216
217

218

JB

JB

MoV
ACALL
JB

JB
MOV

SSLoop: MoV
INC
ACALL
JB

JB

DJNZ
SSEX: ACALL
RET

NoAck, SSEX

Fault, SSubErr

A, SubAdr
XmitByte
NoAck, SSEX

Fault, SSubErr
RO, #XmtDat

A, @RO

RO
XmitByte
NoAck, SSEX

Fault, SSubErr
ByteCnt, SSLoop

SendStop

; Handle a transmit bus fault.

SSubErr: AJMP

Recover

;iCheck for missing
; acknowledge.

; Check for bus

; fault.

Get slave subaddress.

;Send subaddress.
;Check for missing

; acknowledge.

;Check for bus fault.
;Set start of

; transmit buffer.

;Get data for slave.
iSend data to slave.
;Check for missing

; acknowledge.
;iCheck for bus fault.

;Send an I2C stop.

;Attempt bus recovery.

; Receive data byte(s) from slave with subaddress.
; Enter with slave address in SlvAdr, subaddress in SubAdr,
requested in ByteCnt.

; # of data bytes
; Data returned in

RcvSub: CLR
CLR
CLR
MoV

Mov
ACALL
JB

JB
MOV
ACALL
JB

JB
ACALL
JB
Mov
SETB
ACALL
JB

JB
MOV

DJINZ

RcvDat buffer.

NoAck
Fault
Retry
StacksSave, SP

A, SlvAdr
SendAddr
NoAck, RSEX
Fault,RSubErr
A, SubAdr
XmitByte
NoAck, RSEX
Fault,RSubErr
RepStart
Fault,RSubErr
A, S1lvAdr
ACC.0

Sendad2
NoAck, RSEX
Fault,RSubErr

RO, #RcvDat

ByteCnt, RSLoop

78

;Clear error flags.

;iSave stack address

; for bus fault.

;Get slave address.
;Send slave address.
;Check for missing

;i acknowledge.

iCheck for bus fault.

iGet slave subaddress.
iSend subaddress.
iCheck for missing

; acknowledge.

;Check for bus fault.

;Send repeated start.
;iCheck for bus fault.
;iGet slave address.
;Set bus read bit.
;Send slave address.
;Check for missing

; acknowledge.

iCheck for bus fault.

;iSet start of

; receive buffer.
;iCheck for count = 1
; byte only.

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an 12C bus master

AN422

00EC
0O0EE
00F0
00F3
00F4
00F5
00F8

00FA
00FD

OOFE

0101
0104

0107
0109

010A

010C
010F

0112

0115

0117

011A

01l1c

011D

011F

0120

0123

800A
3143
200117
F6

08
D522F6
314F

20010D
F6

759980

309EFD
309D03

3166
22

218a

75D852
309EFD

309908

F599

75981C

3120

752108

8005

September 1989

219
220
221

222
223
224
225
226
227

228
229
230
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

253

254

255

256

257
258
259

260
261
262
263
264
265
266
267
268

269
270

SIMP
RSLoop: ACAL
JB
MOV
INC
DJINZ
RSLast: ACAL

JB
MOV

MOV

ACAL

RET

; Handle a rece

RSubErr: AJMP

RSLast

L RDAck
Fault, RSubErr
@RO,A
RO
ByteCnt,RSLoop

L RcvByte

Fault,RSubErr
@RO,A

I2DAT, #80h

ATN, $
DRDY, RSubErr

L SendStop

ive bus fault.

Recover

;Get data and send

; an acknowledge.
;Check for bus fault.
;Save data.

;Repeat until last byte.

;Get last data byte

; from slave.

iCheck for bus fault.
;Save data.

;Send negative

; acknowledge.

;Wait for NAK sent.
;Check for bus fault.

;Send an I2C bus stop.

;Attempt bus recovery.

B R R R g R
H

i

Subroutines

R R R R R R R]
i

; Send address byte.
; Enter with address in ACC.

SendAddr: MOV

SendAd2: MOV

I2CFG, #BMRQ+BTIR+CTVAL

ATN, $

Master, SAErr

I2DAT,A

;Wait for bus

; granted.
;Should have

; become the bus
; master.

;Send first bit,
; clears DRDY.

I2CON, #BCARL+BCSTR+BCSTP ;Clear start,

MoV
ACALL XmitAddr
RET

SAErr: SETB Fault
RET

; Byte transmit routine.

; Enter with data in ACC.

; XmitByte
; XmitAddr

XmitAddr: MOV

SJIMP

transmits 8 bits.

; releases SCL.
;Finish sending
; address.

;Return bus fault

; status.

transmits 7 bits (for address only).

BitCnt, #8

XmBit2

79

iSet 7 bits of
; address count.

;Request I2C bus.

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an I2C bus master

AN422

0125 752108

0128 F599
012a 23
012B 309EFD
012E 309DOF
0131 D521F4
0134 7598A0

0137 309EFD

013A 309F02
013D D200

013F 22
0140 D201

0142 22

0143 314F
0145 759900

0148 309EFD

014B 309D15
014E 22

014F 752108
0152 E4

0153 4599
0155 23
0156 309EFD
0159 309D07
015C D521F4

015F A29F

0161 33
0162 22

0163 D201
0165 22

0166 C2DE

0168 759821
016B 309EFD
016E 759820
0171 309EFD
0174 759894
0177 C2DC
0179 22

September 1989

271

272
273
274
275
276
277

278

279
280

281
282
283

284
285
286
287
288

289
290
291
292
293

294

295
296
297
298
299

300
301
302
303
304

305

306
307
308
309
310
311
312
313
314
315

316
317
318
319
320
321
322
323

XmitByte:

XmBit:
XmBit2:

XMBX:

XMExrr:

SETB

RET

SETB

RET

BitCnt, #8

I2DAT,A

A

ATN, $

DRDY, XMErr
BitCnt,XmBit
I2CON, #BCDR+BCXA

ATN, $

RDAT, XMBX
NoAck

Fault

; Byte receive routines.

; RDAck

: receives a byte of data,

; an acknowledge.

; RcvByte

receives a byte of data.

i Data returned in ACC.

RDAck:

RcvByte:

RBit:

RAErr:

; I2C stop

SendStop:

ACALL
Mov

Mov

RLC
RET

SETB

RET

routine.

CLR

Mov

RcvByte
I2DAT, #0

ATN, $
DRDY,RdAErr
BitCnt, #8
A

A, I2DAT

A

ATN, $
DRDY,RdErr
BitCnt,RBit

C,RDAT

A

Fault

MASTRQ

I2CON, #BCDR+BXSTP
ATN, $

I2CON, #BCDR

ATN, $

TIRUN

80

;Set 8 bits of data

; count.
;Send this bit.
;Get next bit.

;Wait for bit sent.
;Should be data ready.

;Repeat until all bits sent.

;Switch to
; receive mode.

iWait for acknowledge

; bit.
;Was there an ack?

;Return no acknowledge

; status.

;Return bus fault
; status.

then sends

;iReceive a data byte.

;Send receive
; acknowledge.

;Wait for acknowledge

; sent.

;Check for bus fault.

;Set bit count.

;Init received byte

; to 0.

;Get bit, clear ATN.

;Shift data.

;Wait for next bit.
;iShould be data ready.
;Repeat until 7 bits

; are in.

;Get last bit, don’‘t

; clear ATN.

;Form full data byte.

;Return bus fault status.

;Release bus
; mastership.

iGenerate a bus stop.

;Wait for atn.
;iClear data ready.

;Wait for stop sent.
I2CON, #BCARL+BCSTP+BCXA ;Clear I2C bus.

;Stop timer I.

Phiiips Semiconductors

Application note

Using the 8XC751 microcontroller
as an 12C bus master

AN422

324
325 ; I2C repeated start routine.
326 ; Enter with address in ACC.
327
017A 759822 328 RepStart: MOV I2CON, #BCDR+BXSTR ;Send repeated start.
017D 309EFD 329 JNB ATN, $;Wait for ATN.
0180 759820 330 MOV I2CON, #BCDR ;Clear data ready.
0183 309EFD 331 JNB ATN, $;Wait for repeated
; start sent.
0189 22 333 RET
334
335
336 ; Bus fault recovery routine.
337
018A 31A4 338 Recover: ACALL FixBus ;See if bus is dead or
; can be ‘fixed’.
018C 400D 339 Jc BusReset ;If not ‘fixed’, try
; extreme measures.
018E D202 340 SETB Retry ;If bus OK, return to
; main routine.
0190 c201 341 CLR Fault
0192 €200 342 CLR NoAck
0194 D2DD 343 SETB CLRTI
0196 D2DC 344 SETB TIRUN ;Enable timer I.
0198 D2AB 345 SETB ETI ;Turn on timer I
; interrupts.
01%9a 22 346 RET
347
348 ;This routine tries a more extreme method of bus recovery.
349 ; This is used if SCL or SDA are stuck and cannot
; otherwise be freed.
350 ; (will return to the Recover routine when Timer I times out)
351
019B C2DE 352 BusReset: CLR MASTRQ ;Release bus.
019D 7598BC 353 MoV I2CON, #0BCh ;iClear all 12C flags.
01A0 D2DC 354 SETB TIRUN
01A2 80FE 355 SJMP $;Wait for timer I
; timeout (this will re-
356 ; set the I2C hardware).
357
358
359 ; This routine attempts to regain control of the I2C
; bus after a bus fault.
360 ; Returns carry clear if successful, carry set if failed.
361
01A4 C2DE 362 FixBus: CLR MastRQ ;Turn off I2C functions.
01a6 D3 363 SETB C
01A7 D280 364 SETB SCL ;Insure I/0 port is not
; locking I2C.
01A9 D281 365 SETB SDA
01AB 308029 366 JNB SCL, FixBusEx ;If SCL is low, bus
; cannot be ‘fixed’.
01AE 208113 367 JB SDA,RStop ;If SCL & SDA are high,
; force a stop.
01B1 752109 368 MOV BitCnt, #9 ;Set max # of tries to
; clear bus.
01B4 C280 369 ChekLoop: CLR SCL ;Force an I2C clock.
01B6 31D8 370 ACALL SDhelay
01B8 208109 371 JB SDA, RStop ;Did it work?
01BB D280 372 SETB SCL
01BD 31D8 373 ACALL Sbhelay
01BF D521F2 374 DJINZ BitCnt, ChekLoop ;Repeat clocks until
; either SDA clears or
375 ; we run out of tries.

September 1989 81

Philips Semiconductors

Application note

Using the 8XC751 microcontroller

as an 12C bus master

AN422

01c2

01C4

01Cé
oics
0lca
0lcc
01CE
01D0

01D3
01D6
01D7

01D8
01D9
01DA
01DB
01DC
01DD
01DE
01DF
01EO0

01E1l
01E4
01E6
01E8
01EB
01EE
01F1
01F4
01F7
01FA
01FD

0200

0203
0206
0208

020B
020E
0210

0213

0216
0219
021c
021E

September 1989

8013

c281

31D8
D280
31D8
D281
31D8
308004

308101
c3
22

758107
D2AB

D2AF

75290B
752216
752B2C
752C58
752500
752600
752700
752800

752348

752201
1127
2002F5

752201
114E
2002F8

7523A0

752400
752204
1188

2002F2

376

3717
378

379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

420
421
422
423
424
425
426
427
428

429
430
431
432
433

RStop:

FixBusEx:

SIMP

FixBusEx

SDA

SDelay

SCL

SDhelay

SDA

SDhelay

SCL, FixBusEx

SDA, FixBusEx
C

;Failed to fix bus by
; this method.

;Try forcing a stop
; since SCL & SDA

i are

both high.

;Are SCL & SDA still

; high? If so, assume bus
; is now OK, and return

; with carry cleared.

; Short delay routine (10 machine cycles).

SDhelay:

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
RET

GRE KKK KKk k ok kk kAR KKKk ok kKA h kA Kk kA Kk k ko k ok k ko k ok ok ko

i

Main Program

R R KRR R Kok Kk ko ok ok ok ok ok ke ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR Rk K K K K K ok ok ok Rk kR

Reset:

MainLoop:

ML2:

SL1:

MoV
SETB
SETB
MOV
MoV
MOV
MoV
MOV
MOV
MoV
MoV

MOV

MOV
ACALL
JB

MoV
ACALL
JB

MOV

MOV
MOV
ACALL
JB

SP,#07h

ETI

EA

XmtDat, #11
XmtDat+1, #22
XmtDat+2, #44
XmtDat+3, #88
RcvDat, #0
RcvDat+1, #0
RcvDat+2, #0
RcvDat+3, #0

S1vAdr, #48h

ByteCnt, #1
SendData
Retry,MainLoop

ByteCnt, #1
RcvData
Retry,ML2

S1vAdr, #0A0h
SubAdr, #0h
ByteCnt, #4

SendSub
Retry, SL1

82

;Set stack location.

;Enable
;iEnable
;Set up
;Set up
iSet up
;Set up

timer I interrupts.
global interrupts.
transmit data.
transmit data.
transmit data.
transmit data.

;iClear receive data.
;Clear receive data.
;iClear receive data.
;Clear receive data.

;Set slave address

i (8-bit

I/0 port).

;Set up byte count.
;Send data to slave.

;jSet up byte count.
;Read data from slave.

;Set slave address

; (RAM chip) .

iSet slave subaddress.
;Set up byte count.

Philips Semiconductors

Application note

Using the 8XC751 microcontroller
as an |12C bus master

ANA422

0221 752204
0224 11B9
0226 2002F8

0229 0529
022B 052A
022D 052B
022F 052C
0231 80CD

I2CAPP
ACC.
ATN. .
BCARL.
BCDR .
BCSTP.
BCSTR.
BCXA
BIDLE.
BITCNT
BMRQ
BTIR
BUSRESET
BXSTP.
BXSTR.
BYTECNT.
CHEKLOOP
CLRINT
CLRTI.
CTVAL.
DRDY

EA .
ETI. .
FAULT.
FIXBUS
FIXBUSEX
FLAGS.
I2CFG.
I2CON.
I2DAT.
MAINLOOP
MASTER
MASTRQ
ML2. .
NOACK.
PO .
RBIT
RCVBYTE.
RCVDAT
RCVDATA.
RCVSUB
RDACK.
RDAT
RDATERR .
RDERR.
RDEX .
RDLAST
RDLOOP
RECOVER.
REPSTART
RESET.
RETRY.
RSEX

September 1989

434
435
436
437
438
439
440
441
442
443
444

83C751 Single Master I2C Routines

SL2:

D
B

w0 oo

NnTOoOONOONNOAWNNNUNAUDUWANENUODUDUOUUNOWWWW

MOV ByteCnt, #4
ACALL RcvSub

JB Retry, SL2
INC XmtDat

INC XmtDat+1
INC XmtDat+2
INC XmtDat+3
SJIMP MainLoop

ENDASSEMBLY COMPLETE,

ADDR
ADDR
NUMB
NUMB
NUMB
NUMB
NUMB
NUMB
ADDR
NUMB
NUMB
ADDR
NUMB
NUMB
ADDR
ADDR
ADDR
ADDR
NUMB
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR

00EOH
009EH
0010H
0020H
0004H
0008H
0080H
0040H
0021H
0040H
0010H
019BH
0001H
0002H
0022H
01B4H
0026H
00DDH
0002H
009DH
00AFH
00ABH
0001H
01A4H
01D7H
0020H
00D8H
0098H
0099H
0200H
0099H
00DEH
020BH
0000H
0080H
0153H
014FH
0025H
004EH
00B9H
0143H
009FH
0086H
0163H
0083H
0074H
006AH
018AH
017AH
01ElH
0002H
0107H

PREDEFINED
PREDEFINED

NOT USED

PREDEFINED
PREDEFINED

PREDEFINED
PREDEFINED

PREDEFINED
PREDEFINED
PREDEFINED

PREDEFINED
PREDEFINED

PREDEFINED

PREDEFINED

83

;iSet up byte count.

;Do it all again.

0 ERRORS FOUND

Philips Semiconductors

Application note

Using the 8XC751 microcontroller

as an 12C bus master

AN422

RSLAST

RSLOOP

RSTOP.

RSUBERR.

SAERR.

SCL.

SDA.
SDATERR.

SDELAY

SDEX
SDLOOP
SENDAD2 .
SENDADDR
SENDDATA
SENDSTOP
SENDSUB.
SL1.
SL2. .
SLVADR
SP . .
SSEX
SSLOOP
SSUBERR.
STACKSAVE.
SUBADR
TIMERI
TIRUN.
XMBIT.
XMBIT2
XMBX
XMERR .
XMITADDR
XMITBYTE
XMTDAT

September 1989

onoononowAaUDUONQAODUONNO0ONONONANOBWONAOAON

ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR
ADDR

00F8H
00EEH
01C4H
010AH
011DH
0080H
0081H
004CH
01D8H
0049H
003CH
0115H
010CH
0027H
0166H
0088H
0213H
0221H
0023H
0081H
00B4H
00A7H
00B7H
002DH
0024H
001BH
00DCH
0128H
012AH
013FH
0140H
0120H
0125H
0029H

PREDEFINED

NOT USED
PREDEFINED

84

Philips Semiconductors

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

DESCRIPTION

This application note shows how to use the
PCD8584 12C-bus controller with 80C51
family microcontrollers. One typical way of
connecting the PCD8584 to an 80C31 is
shown. Some basic software routines are
described showing how to transmit and
receive bytes in a single master system. An
example is given of how to use these routines
in an application that makes use of the 12C
circuits on an |12C demonstration board.

The PCD8584 is used to interface between
parallel microprocessor or microcontroller
buses and the serial 12C bus. For a
description of the 12C bus protocol refer to the
12C bus specification which is printed in the
microcontroller user guide.

The PCD8584 controls the transmission and
reception of data on the I12C bus, arbitration,
clock speeds and transmission and reception
of data on the parallel bus. The parallel bus is
compatible with 80C51, 68000, 8085 and Z80
buses. Communication with the 12C-bus can
be done on an interrupt or polled basis. This
application note focuses on interfacing with
8051 microcontrollers in single master
systems.

PCD8584

In Figure 1, a block diagram is shown of the
PCDB8584. Basically it consists of an
12C-interface similar to the one used in 84Cxx
family microcontrollers, and a control block
for interfacing to the microcontroller.

The control block can automatically
determine whether the control signals are
from 80xx or 68xxx type of microcontrollers.

This is determined after the first write action
from the microcontroller to the PCD-8584.
The control block also contains a
programmable divider which allows the
selection of different PCD8584 and 12C
clocks.

The I2C interface contains several registers
which can be written and read by the
microcontroller.

S1 is the control/status register. This register
is accessed while the A0 inputis 1. The
meaning of the bits depends on whether the
register is written to or read from. When used

April 1990

as a single master system the following bits
are important:

PIN: Interrupt bit. This bit is made active
when a byte is sent/received to/from the
12C-bus. When ENl is made active, PIN also
controls the external INT line to interrupt the
microcontroller.

ESO0-ES2: These bits are used as pointer
for addressing S0, S0’, S2 and S3. Setting
ESO0 also enables the Serial I/0.

ENI: Enable Interrupt bit. Setting this bit
enables the generation of interrupts on the
INT line.

STA, STO: These bits allow the generation
of START or STOP conditions.

ACK: with this bit set and the PCD8584 is
in master/receiver mode, no acknowledge is
generated by the PCD8584. The
slave/transmitter now knows that no more
data must be sent to the 12C-bus.

BER: This bit may be read to check if bus
errors have occurred.

BB: This bit may be read to check whether
the bus is free for I2C-bus transmission.

S2 is the clock register. It is addressed when
A0 = 0 and ES0-ES2 = 010 in the previous
write cycle to S1. With the bits S24-S20 it is
possible to select 5 input clock frequencies
and 4 12C clock frequencies.

S3is the interrupt vector register. It is
addressed when A0 = 0 and ES0-ES2 = 001
in the previous write cycle to S1. This register
is not used when an 80C51 family
microcontroller is used. An 80C51
microcontroller has fixed interrupt vector
addresses.

S0’ is the own address register. It is
addressed when A0 = 0 and ES0-ES2 = 000.
This register contains the slave address of
the PCD8584. In the single master system
described here, this register has no functional
use. However, by writing a value to S0’, the
PCD8584 determines whether an 80Cxx or
68xxx type microcontroller is the controlling
microcontroller by looking at the CS and WR
lines. So independent of whether the
PCD8584 is used as master or slave, the

Application note

AN425

microcontroller should always first write a
value to SO’ after reset.

S0 is the [2C data register. It is addressed
when A0 = 0 and ES0-ES2 = 1x0.
Transmission of a byte on the I2C bus is done
by writing this byte to SO. When the
transmission is finished, the PIN bitin S1 is
reset and if ENI is set, an interrupt will be
generated. Reception of a byte is signaled by
resetting PIN and by generating an interrupt if
ENI is set. The received byte can be read
from SO.

The SDA and SCL lines have no protection
diodes to Vpp. This is important for
multimaster systems. A system with a
PCD8584 can now be switched off without
causing the 12C-bus to hang-up. Other
masters still can use the bus.

For more information of the PCD8584 refer to
the data sheet.

PCD8584/8031 Hardware Interface
Figure 2 shows a minimum system with an
8051 family controller and a PCD8584. In this
example, an 80C31 is used. However any
80C51 family controller with external
addressing capability can be used.

The software resides in EPROM U3. For
addressing this device, latch U2 is necessary
to demultiplex the lower address bits from the
data bits. The PCD8584 is mapped in the
external data memory area. It is selected
when A1 = 0. Because in this example no
external RAM or other mapped peripherals
are used, no extra address decoding
components are necessary. A0 is used by the
PCD8584 for proper register selection in the
PCD8584.

UBA is an inverter with Schmitt trigger input
and is used to buffer the oscillator signal of
the microcontroller. Without buffering, the rise
and fall time specifications of the CLK signal
are not met. It is also important that the CLK
signal has a duty cycle of 50%. If this is not
possible with certain resonators or
microcontrollers, then an extra flip-flop may
me necessary to obtain the correct duty
cycle.

US5C and U5D are used to generate the
proper reset signals for the microcontroller
and the PCD8584.

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

A A [[A A
pB7 | DB6 | DB5 | DB4 | DB3| DB2 | DB1 |DBO SELECT
A0 ESO ES1 ES2 ‘IACK
scL DIGITAL Y v Y A A \
% FILTER I BUS BUFFER
S0 DATA
REGISTER
scL > DATA SHIFT REGISTER SO RW| 0 1 X 0 H
CONTROL |
I COMPARATOR (Rﬂ}—
S0’ ADDRESS
REGISTER
T T
| OWN ADDRESS S0' i | RW| O 0 0] X
DEFAULT 00H 80XX/OFH 68XXX)
S3INT VECTOR
EGIST
“ACK REGISTER
| INTERRUPT VECTOR J__‘ RW|O0 0 0 1 X
RACK)| X 1 o X L
0 $2 CLOCK
REGISTER
SCL DIGITAL | 0 | 0 | 0 ’524 szal szzl sz1| szo|-—1 (Y 1 0 X
L > FILTER
S1CONTROL
‘ STATUS REGISTER
PIN | ESO | ES1 | ES2 | EN1| STA | STO | ACK wl? ©° X X X
1 1 X X H
SCL ADO/ K R| 1 1 X X H
CONTROL PIN| O [STS|BER| pg| AAS| LAB | "BB
CONTROL BLOCK
BOXXX/ | ENRD |
ﬁéé’é EN EN
D N SCL 0
(1.5MHz)
SIO DIVIDER
DIVIDER 1 L
FILTER on eS| (522520 | Y| X v
t=16CLK [1653251288 :2/:3/:4/:5/:8
12C OWN ADDR. *RESET cs “WR/ A0 *RD/ “INT *IACK CLK
WAKE UP INT. *STROBE ¥ RW *DACKY v 50:50
(S.ADDR.P) (0.c)

SU00371

April 1990

Figure 1. PCD8584 Block Diagram

86

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

Veco-
401__L 201_1 23]__‘_ 201_1 Ml__L
cs=F = C4 UI==C6 U2=FC7 U3 ==C8 U4 ==CO Us == C10
St 47uF 20 10 14 10 7
Usc RESET
2 2 'L ADO...AD7 C5...C10=0.1uF
74HCT14 D1
1N4148
10 L:; o 11
(9 12 N
[—1 A1 o1 ==
S [~ 023
By 39 4 = 2 [—Has 03]
SUERVP PO N—] o Q0 f— 61 aa ot
C1 (220F) 19 Po. 11281 N_4| o o EBN 7 e
H—2 x1 po.2l-2L/] N7 po a8 s ool N
= 36 /1 N—8} b3 Gl Ao...a7 > 07—6'\
12MHz 18 P0.3
H—=——— e E N 13l 13 a7 m
o TV 14| P4 Q4 N 24] ho
s P0.5 14 o as 2 (24
{12pF) o] eser Po.6f-23/] N 17 o S EEN 2] o
JP2 PO.7p-== 18} p7 a7 P2 a1 i
2 21 oc
16 P— 0 Veo qmro P29 9a 20| o
1a p— 4 roa 2 74HCTa73 221 O
i 5] 0 ka2 AB...A12 7| B
1: - : ;10 P23S P
12 p— . 422
wp— He o RS 2764
10 r IS D) AY 1 ¢
9 pP— P13 = — N
8 P14
7 p— A & pis w52 : l ve
sp P16 PSENpS— l U S
L 2 DBO
5 P17 ALER |30 l - m bBolI~
4 ™0 o o 081 [~
4 B 17 peal1L,
2 PCDB0C31BH-3 s TN
il i D84
DB5
" 19 DBs [\
5 mTESE DB7 5]
1 NUSA, VooO——=4] TACK
JP1 {>C e
Rl ——1 74HCT14
s — s
-
R2——100
? Yoo PCDB584
12¢
12C CONNECTOR o

Basic PCD8584/8031 Driver
Routines

In the listing section (page 89), some basic
routines are shown. The routines are divided
in two modules. The module ROUTINE
contains the driver routines and initialization
of the PCD8584. The module INTERR
contains the interrupt handler. These
modules may be linked to a module with the
user program that uses the routines in
INTERR and ROUTINE. In this application
note, this module will be called USER. A
description of ROUTINE and INTERR
follows.

Module ROUTINE

Routine Sendbyte (Lines 17-20)—

This routine sends the contents of the
accumulator to the PCD8584. The address is
such that A0 = 0. Which register is accessed

April 1990

Figure 2. PCD8584 to 80C31 Interface

depends on the contents of ES0-ES2 of the
control register. The address of the PCD8584
is in variable ‘PCD8584’. This must have
been previously defined in the user program.
The DPTRis used as a pointer for
addressing the peripheral. If the address is
less than 255, then RO or R1 may be used as
the address pointer.

Routine Sendcontr (Lines 25, 26)—

This routine is similar to Sendbyte, except
that now A0 = 1. This means that the
contents of the accumulator are sent to the
control register S1 in the PCD8584.

Routine Readbyte (Lines 30-33)—

This routine reads a register in the PCD8584
with A0 = 0. Which register depends on
ESO0-ES2 of the control register. The result of
the read operation is returned in the
accumulator.

87

Routine Readcontr (Lines 37-39)—

This routine is similar to Readbyte, except
that now AQ = 1. This means that the
accumulator will contain the value of status
register S1 of the PCD8584.

Routine Start Lines (44-56)—

This routine generates a START-condition
and the slave address with a R/W bit. In line
44, the variable IIC_CNT is reset. This
variable is used as a byte counter to keep
track of the number of bytes that are received
or transmitted. IIC_CNT is defined in module
INTERR.

Lines 45-46 increment the variable
NR_BYTES if the PCD8584 must receive
data. NR_BYTES is a variable that indicates
how many bytes have to be received or
transmitted. It must be given the correct value
in the USER module. Receiving or
transmitting is distinguished by the value of

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

the DIR bit. This must also be given the
correct value in the USER module.

Then the status register of PCD8584 must be
read to check if the 12C bus is free. First the
status register must be addressed by giving
ES0-ES2 of the control register the correct
value (lines 47-48). Then the Bus Busy bit is
tested until the bus is free (lines 49-50). If this
is the case, the slave address is sent to data
register SO and the I12C_END bit is cleared
(lines 51-53). The slave address is set by the
user program in variable USER. The LSB of
the slave address is the R/W bit. 1I2C_END
can be tested by the user program whether
an 12C reception/transmission is in progress
or not.

Next the START condition will be generated
and interrupt generation enabled by setting
the appropriate bits in control register S1.
(lines 54-55).

Now the routine will return back to the user
program and other tasks may be performed.
When the START condition, slave address
and R/W bit are sent, and the ACK is
received, the PCD8584 will generate an
interrupt. The interrupt routine will determine
if more bytes have to be received or
transmitted.

Routine Stop (Lines 59-62) —

Calling this routine, a STOP condition will be
sent to the 12C bus. This is done by sending
the correct value to control register S1 (lines
59-61). After this the I2C_END bit is set, to
indicate to the user program that a complete
12C sequence has been received or
transmitted.

Routine 12C_lInit (Lines 65-76)—

This routine initializes the PCD8584. This
must be done directly after reset. Lines 67-70
write data to ‘own address’ register SO’. First
the correct address of SO’ is set in control
register S1 (lines 67-68), then the correct
value is written to it (lines 69-70). The value
for SO’ is in variable SLAVE_ADR and set by
the user program. As noted previously,
register SO’ must always be the first register
to be accessed after reset, because the
PCD8584 now determines whether an
80Cxxx or 68xxx microcontroller is
connected. Lines 72-76 set the clock register
S2. The variable 12C_CLOCK is also set by
the user program.

Module INTERR

This module contains the 12C interrupt
routine. This routine is called every time a
byte is received or transmitted on the 12C
bus. In lines 12-15 RAM space for variables
is reserved.

BASE is the start address in the internal

April 1990

80C51 RAM where the data is stored that is
received, or where the data is stored that has
to be transmitted.

NR_BYTES, IIC_CNT and SLAVE were
explained earlier. ”2C_END and DIR are flags
that are used in the program. I2C_END
indicates whether an I2C transmission or
reception is in progress. DIR indicates
whether the PCD8584 has to receive or
transmit bytes. The interrupt routine makes
use of register bank 1.

The transmission part of the routine starts at
line 42. In lines 42-43, a check is made
whether IC_CNT = NR_BYTES. If true, all
bytes are sent and a STOP condition may be
generated (lines 44-45).

Next the pointer for the internal RAM is
restored (line 46) and the byte to be
transmitted is fetched from the internal RAM
(line 47). Then this byte is sent to the
PCD8584 and the variables are updated
(lines 47-49). The interrupt routine is left and
the user program may proceed. The receive
part starts from line 55. First a check is made
if the next byte to be received is the last byte
(lines 56-59). If true the ACK must be
disabled when the last byte is received. This
is accompiished by resetting the ACK bit in
the control register S1 (lines 60-61).

Next the received byte may be read (line 62)
from data register S0. The byte will be
temporary stored in R4 (line 63). Then a
check is made if this interrupt was the first
after a START condition. If so, the byte read
has no meaning and the interrupt routine wilt
be left (lines 68-70). However by reading the
data register SO the next read cycle is
started.

If valid data is received, it will be stored in the
internal RAM addressed by the value of
BASE (lines 71-73). Finally a check is made
if all bytes are received. If true, a STOP
condition will be sent (lines 75-78).

EXAMPLES

In the listing section (starting on page 8),
some examples are shown that make use of
the routines described before. The examples
are transmission of a sequence, reception of
12C data and an example that combines both.

The first example sends bytes to the
PCD8577 LCD driver on the OM1016
demonstration board. Lines 7 to 10 define the
interface with the other modules and should
be included in every user program. Lines 14
to 16 define the segments in the user
module. It is completely up to the user how to
organize this.

Lines 24 and 28 are the reset and interrupt
vectors. The actual user program starts at

88

line 33. Here three variables are defined that
are used in the I2C driver routines. Note that
PCD8584 must be an even address,
otherwise the wrong internal registers will be
accessed! Lines 37-42 initialize the interrupt
logic of the microcontroller. Next the
PCD8584 will be initialized (line 45).

The PCD8584 is now ready to transmit data.
A table is made in the routine at line 61. For
the PCD8577, the data is a control byte and
the segment data. Note that the table does
not contain the slave address of the LCD
driver. In lines 51-54, variables are made
ready to start the transmission. This consists
of defining the direction of the transmission
(DIR), the address where the data table
starts (BASE), the number of bytes to
transmit (NR_BYTES, without slave
address!) and the slave address (SLAVE) of
the 12C peripheral that has to be accessed.

In line 55 the transmission is started. Once
the I2C transmission is started, the user
program can do other tasks because the
transmission works on interrupts. In this
example a loop is performed (line 58). The
user can check the end of the transmission
during the other tasks, by testing the
I2C_END bit regularly.

The second example program receives 2
bytes from the PCF8574P 1/O expander on
the OM1016 demonstration board. Until line
45 the program is identical to the transmit
routine because it consists of initialization
and variable definition. From line 48, the
variables are set for I2C reception. The
received bytes are stored in RAM area from
label TABLE. During reception, the user
program can do other tasks. By testing the
12C_END bit the user can determine when to
start processing the data in the TABLE.

The third example program displays time
from the PCF8583P clock/calendar/RAM on
the LCD display driven by the PCF8577. The
LED display (driven by SAA1064) shows the
value of the analog inputs of the A/D
converter PCF8591. The four analog inputs
are scanned consecutively.

In this example, both transmit and receive
sequences are implemented as shown in the
previous examples. The main clock part is
from lines 62-128. This contains the calls to
the 12C routines. From lines 135-160, routines
are shown that prepare the data to be
transmitted. Lines 171 to 232 are the main
program for the AD converter and LED
display. Lines 239 to 340 contain routines
used by the main program. This demo
program can also be used with the I2C
peripherals on the OM1016 demonstration
board.

Philips Semiconductors

Application note

Interfacing the PCD8584 I2C-bus controller
to 80C51 family microcontrollers

AN425

ASM51 TSW ASSEMBLER Routines for PCD8584

LOC OBJ LINE SOURCE

1 S$TITLE (Routines for PCD8584)

2 $PAGELENGTH(40)

3 ;Program written for PCD8584 as master

4

5 PUBLIC READBYTE, READCONTR, SENDBYTE

PUBLIC SENDCONTR, START, STOP

6 PUBLIC I2C_INIT

7 EXTRN BIT(I2C_END,DIR)

8 EXTRN DATA(SLAVE, IIC_CNT,NR_BYTES)
9 EXTRN NUMBER(SLAVE_ADR, I2C_CLOCK, PCD8584)
10

11 ;Define code segment
12 ROUTINE SEGMENT CODE
—_—— 13 RSEG ROUTINE
14 ;
15 ;SENDBYTE sends a byte to PCD8584 with A0=0
16 ;Byte to be send must be in accu

0000: R 17 SENDBYTE:
0000: 900000 R 18 MOV DPTR, #PCD8584 ;Register address
0003: FO 19 SEND: MOVX @DPTR,A ;iSend byte
0004: 22 20 RET
21

22 ;SENDCONTR sends a byte to PCD8584 with A0=1
23 ;Byte to be send must be in accu

0005: 24 SENDCONTR:
0005: 900001 R 25 MOV DPTR, #PCD8584+01H ;Register address
0008: 80F9 26 JMP SEND

27

28 ;READBYTE reads a byte from PCD8584 with A0=0
29 ;Received byte is stored in accu

000A: 30 READBYTE:
000A: 900000 R 31 MOV DPTR, #PCD8584 ;Register address
000D: EO 32 REC: MOVX A, @DPTR ;Receive byte
000E: 22 33 RET
34

35 ;READCONTR reads a byte from PCD8584 with A0=1
36 ;Received byte is stored in accu

000F: 37 READCONTR:
000F: 900001 R 38 MOV DPTR, #PCD8584+01H ;Register address
0012: 80F9 39 JMP REC

40

41 ;START tests if the I2C bus is ready. If ready a
42 ;START-condition will be sent, interrupt generation
43 ;and acknowledge will be enabled.

0014: 750000 R 44 START: MOV IIC_CNT,#00 ;Clear I2C byte counter

0017: 200002 R 45 JB DIR,PROCEED ;If DIR is ‘receive’ then

001A: 0500 R 46 INC NR_BYTES ;increment NR_BYTES

001C: 7440 47 PROCEED:MOV A, #40H ; Read STATUS register of
; 8584

001E: 120005 R 48 CALL SENDCONTR

0021: 12000F R 49 TESTBB: CALL READCONTR

0024: 30EQFA 50 JNB ACC.0,TESTBB; Test BB/ bit

0027: E500 R 51 MOV A, SLAVE

0029: C200 R 52 CLR I2C_END ;Reset I2C ready bit

002B: 120000 R 53 CALL SENDBYTE ;Send slave address

002E: 744D 54 MOV A,#01001101B;Generate START, set ENI,
iset ACK

0030: 120005 R 55 CALL SENDCONTR

0033: 22 56 RET

57

58 ;STOP will generate a STOP condition and set the
;I2C_END bit
0034: 74C3 59 STOP: MOV A, #11000011B

April 1990 89

Philips Semiconductors Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

0036: 120005 R 60 CALL SENDCONTR ;Send STOP condition
0039: D200 R 61 SETB I2C_END ;Set I2C_END bit
003B: 22 62 RET

63 ;

64 ;I2C_init does the initialization of the PCD8584
003C: 65 I2C_INIT:

66 ;Write own slave address
003C: E4 67 CLR A
003D: 120005 R 68 CALL SENDCONTR ;Write to control register
0040: 7400 R 69 MOV A, #SLAVE_ADR
0042: 120000 R 70 CALL SENDBYTE ;Write to own slave

N jregister

71 ;Write clock register
0045: 7420 72 MOV A, #20H
0047: 120005 R 73 CALL SENDCONTR ;Write to control register
004A: 7400 R 74 MOV A, #I2C_CLOCK
004C: 120000 R 75 CALL SENDBYTE ;Write to clock register
004F: 22 76 RET

77
0050: 78 END

April 1990 90

FNIps semiconauctors

Applicaton note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

ASM51 TSW ASSEMBLER I2C INTERRUPT ROUTINE

LOC OBJ LINE SOURCE
1 S$TITLE (I2C INTERRUPT ROUTINE)
2 $PAGELENGTH(40)
3
4 PUBLIC INTO_SRV
5 PUBLIC DIR, I2C_END
6 PUBLIC BASE,NR_BYTES, IIC_CNT, SLAVE
7 EXTRN CODE (SENDBYTE, SENDCONTR, STOP)
EXTRN CODE (READBYTE, READCONTR)
8

9 ;Define variables in RAM
10 IIC_VAR SEGMENT DATA

———- 11 RSEG IIC_VAR
0000: R 12 BASE: DS 1 ;Pointer to I2C table (till
;256)
0001: 13 NR_BYTES: DS 1 ;Number of bytes to rcv/trm
0002: 14 TIIC_CNT:DS 1 ;I2C byte counter
0003: 15 SLAVE: DS 1 iSlave address after START
16 ;

17 ;Define variable segment
18 BIT_VAR SEGMENT DATA BITADDRESSABLE

- 19 RSEG BIT_VAR
0000: R 20 STATUS: DS 1 ;jByte with flags
0000 R 2 I2C_END BIT STATUS.O ;Defines if a I2C
;transmission is finished
22 ;1 is finished
23 ;'0’ is not ready
0000 R 24 DIR BIT STATUS.3 ;Defines direction of I2C
;transmission
25 ;'1l’ :Transmit ‘0’ :Receive
26 ;

27 ;Define code segment for routine
28 TIIC_INT SEGMENT CODE PAGE

——— 29 RSEG IIC_INT

30

31 ;Program uses registers in RB1

32 USING 1

33
0000: R 34 INTO_SRV:
0000: COEO 35 PUSH ACC ;Save acc. en psw on stack
0002: CODO 36 PUSH PSW
0004: 75D008 37 MOV PSW, #08H ;Select register bank 1
0007: 300016 R 38 JNB DIR,RECEIVE ;Test direction bit

39 78584 is MST/TRM

40

41 ;Program part to transmit bytes to IIC bus
000Aa: E502 R 42 MOV A, IIC_CNT ;Compare IIC_CNT and

iNR_BYTES

000C: B50105 R 43 CJINE A,NR_BYTES, PROCEED
000F: 120000 R 44 CALL STOP ;All bytes transmitted
0012: 8032 45 JMP EXIT
0014: A800 R 46 PROCEED:MOV RO, BASE ;RAM pointer
0016: E6 47 MOV A, QRO ;Source is internal RAM
0017: 0500 R 48 INC BASE ;Update pointer of table
0019: 120000 R 49 CALL SENDBYTE ;Send byte to IIC bus
001C: 0502 R 50 INC IIC_CNT ;Update byte counter
001lE: 8026 51 JMP EXIT

52

53

54 ;Program to receive byte from IIC bus
0020: 55 RECEIVE:
0020: E502 R 56 MOV A, IIC_CNT ;Test if last byte is to be

;received

0022: 04 57 INC A

April 1990 91

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

0023:
0024:
0027:

0029:

002C:
002F:

0030:
0031:
0034:

0036:
0038:
0039:
003A:
003C:

003E:
0040:
0043:

0046:
0048:
004A:

004B:

04
B50105
7448

120000

120000
FC

E4
B50202
8006

A800
EC
F6
0500
0502

E501
B50203
120000

DODO
DOEO
32

April 1990

o

INC A

CJINE A,NR_BYTES, PROC_RD

MOV A,#01001000B;Last byte to be received.
;Disable ACK

CALL SENDCONTR ;Write control word to

; PCD8584
PROC_RD:CALL READBYTE ;Read I2C byte
MOV R4,A ;jSave accu

;If RECEIVE is entered after the transmission of

; START+address then the result of READBYTE is not
;relevant. READBYTE is used to start the generation
;of the clock pulses for the next byte to read.
;This situation occurs when IIC_CNT is 0

CLR A ;Test IIC_CNT
CJINE A,IIC_CNT, SAVE
JMP END_TEST ;START is send. No relevant

;data in data reg. of 8584
SAVE: MOV RO,BASE

MOV A,R4 ;Destination is internal RAM
MOV @RO,A
INC BASE
END_TEST:INC IIC_CNT ;Test if all bytes are
;received

MOV A,NR_BYTES
CJINE A, IIC_CNT, EXIT

CALL STOP ;All bytes received
i
EXIT: POP PSW ;Restore PSW and accu
POP ACC
RETI
i
END

92

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

ASMS51

LoC

0000:

0000:

0003:

0055
0o01c
0000

0003:
0005:
0007:
0009:

000B:

000E:

0011:
0013:
0016:
0019:

ooic:

TSW ASSEMBLER

OBJ

020000

020000

D2A8
D2AF
D2B8
D288

120000

120021

D200

750000
750005
750074

120000

April 1990

R

R

el

LINE

Send a string of bytes to the PCF8577 on OM1016
SOURCE

$TITLE (Send a string of bytes to the PCF8577 on
OM1016)

SPAGELENGTH (40)

i

;This program is an example to transmit bytes via

;i PCD8584

;to the I2C-bus
PUBLIC SLAVE_ADR, I2C_CLOCK, PCD8584
EXTRN CODE (I2C_INIT, INTO_SRV, START)
EXTRN BIT(I2C_END, DIR)
EXTRN DATA (BASE,NR_BYTES, IIC_CNT, SLAVE)

;Define used segments

USER SEGMENT CODE ;Segment for user program

RAMTAB SEGMENT DATA iSegment for table in
;jinternal RAM

RAMVAR SEGMENT DATA ;Segment for RAM variables
;in RAM

RSEG RAMVAR
STACK: DS 20 iReserve stack area

CSEG AT OOH
JMP MAIN ;Reset vector

CSEG AT 03H
JMP INTO_SRV ;I2C interrupt vector
; (INTO/)

i
i

RSEG USER
;Define I2C clock, own slave address and PCD8584
;hardware address

SLAVE_ADR EQU 55H ;Oown slave address is 55H
I2C_CLOCK EQU 00011100B ;12.00MHz/90kHz
PCD8584 EQU 0000H ;PCD8584 address with A0=0

;0000: 7581FF R 37 MAIN: MOV SP,#STACK-1 ;Initialize stack pointer
;Initialize 8031 interrupt registers for I2C

;interrupt
SETB EX0 ;Enable interrupt INTO/
SETB EA ;Set global enable
SETB PX0 ;Priority level ‘1’
SETB ITO ;INTO/ on falling edge

;Initialize PCD8584
CALL I2C_INIT

;iMake a table in RAM with data to be transmitted.
CALL MAKE_TAB

;Set variables to control PCD8584
SETB DIR ;DIR='transmission’
MOV BASE, #TABLE ;Start address of I2C-data
MOV NR_BYTES, #05H ;5 bytes must be

;transferred
MOV SLAVE, #01110100B ;Slave address PCF8577
; + WR/
CALL START ;Start I2C transmission
93

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

001F:

0021:
0021:

0023:
0025:
0026:
0028:
0029:
002B:
002C:
002E:
002F:
0031:

0000:

000A:

80FE

April 1990

LOOP:

JMP

i
MAKE_TAB:

MOV

MOV
INC
MOV
INC
MOV
INC
MOV
INC
MOV
RET

LOOP

RO, #TABLE

@RO, #00
RO

@RO, #0FCH
RO

@RO, #60H
RO

@RO, #0DAH
RO

@RO, #0F2H

RSEG RAMTAB
DS 10

;Endless loop when program
;is finished

;Make data ready for I2C
;transmission
;Controlword PCF8577
;0

s

;2

;13

;iReserve space in internal
;data RAM
;for I2C data to transmit

94

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller

to 80C51 family microcontrollers

AN425

AsSM51

Loc

0000:

0000:

0003:

0055
0o1lcC
0000

0003:
0005:
0007:
0009:

000B:

000E:
0010:
0013:
0016:

0019:

001cC:

TSW ASSEMBLER

OBJ

020000

020000

D2A8
D2AF
D2B8
D288

120000

Cc200

750000
750002
75004F

120000

80FE

April 1990

R

R

wowm o el

o

LINE

W

Receive 2 bytes from the PCF8574P on OM1016

SOURCE

STITLE

SPAGELENGTH (40)

i

(Receive 2 bytes from the PCF8574P on OM1016)

;This program is an example to receive bytes via

;PCD8584

;from the I2C-bus

B

;Define
USER
RAMTAB

RAMVAR

H

H

;Define

PUBLIC
EXTRN
EXTRN
EXTRN

used segments
SEGMENT CODE
SEGMENT DATA

SEGMENT DATA

RSEG
Ds 20

RAMVAR

CSEG AT 00H
JMP MAIN

CSEG AT 03H
JMP INTO_SRV

RSEG USER
I2C clock,

;hardware address
SLAVE_ADR EQU 55H
I2C_CLOCK EQU 00011100B ;12.00MHz/90kHz

37 MAIN:

SLAVE_ADR, I2C_CLOCK, PCD8584

CODE (I2C_INIT, INTO_SRV, START)

BIT (I2C_END, DIR)

DATA (BASE, NR_BYTES, IIC_CNT, SLAVE)

;Segment for user program
;Segment for table in
;internal RAM

;Segment for RAM variables
;in RAM

iReserve stack area

;jReset vector

;I2C interrupt vector
; (INTO/)

own slave address and PCD8584

;Own slave address is 55H

;PCD8584 address with A0=0
MOV SP,#STACK-1 ;Initialize stack pointer

;Initialize 8031 interrupt registers for I2C

PCD8584 EQU 0000H
;0000: 7581FF R
iinterrupt
SETB EXO0
SETB EA
SETB PX0
SETB ITO

i

;Initialize PCD8584

H

CALL I2C_INIT

;Enable interrupt INTO/
;Set global enable
;Priority level ‘1°
;INTO/ on falling edge

;Set variables to control PCD8584

LOOP:

CLR DIR

;DIR='receive’

MOV BASE, #TABLE ;Start address of I2C-data
MOV NR_BYTES, #02H ;2 bytes must be received
MOV SLAVE, #01001111B ;Slave address PCF8574

CALL START

JMP LOOP

; + RD
ijStart I2C transmission

;Endless loop when program
;is finished

95

Philips Semiconductors Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

—— 58 RSEG RAMTAB
0000: R 59 TABLE: DS 10 ;Reserve space in internal
;data RAM
60 ;for received I2C data

000A: 63 END

April 1990 96

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

ASM51

Loc

0000:
0014:
0015:
0016:

0017:

0000:

0003:

0055
0o1ic
0000
00A3
00A2
009F
009E
0074

0076

0000:

TSW ASSEMBLER

OBJ

020000

020000

7581FF

April 1990

R

R

R

LINE

[)

43

44

45

46

47

48
49

Demo program for PCD8584 I2C-routines

SOURCE

$TITLE (Demo program for PCD8584 I2C-routines)
$PAGELENGTH (40)

iProgram displays on the LCD display the time (with

;PCF8583) . Dots on LCD display blink every second.
;On the LED display the values of the successive

;analog input channels are shown.

iProgram reads analog channels of PCF8591P.

;Channel number and channel value are displayed
isuccessively.
iValues are displayed on LCD and LED display on I2C
jdemo board.

i

PUBLIC

EXTRN
EXTRN
EXTRN

SLAVE_ADR, I2C_CLOCK, PCD8584

CODE (I2C_INIT, INTO_SRV, START)

BIT(I2C_END, DIR)

DATA (BASE,NR_BYTES, IIC_CNT, SLAVE)

;Define used segments

USER
RAMTAB

RAMVAR

i

SEGMENT CODE
SEGMENT DATA

SEGMENT DATA

iinternal RAM

RSEG RAMVAR
STACK: DS 20

PREVIOUS: DS 1

CHANNEL:DS 1

;jStack area
iStore for previous seconds

;Segment for user program
iSegment for table in

iSegment for variables

(20 bytes)

;Channel number to be

;Analog value sampled

jConverted BCD value sampled

;sampled
AN_VAL: DS 1
;channel
CONVAL: DS 3
;channel
CSEG AT 00H
LJMP MAIN ;Reset vector
i
CSEG AT 03H ;INTO/
LJMP

i

i

RSEG USER37

INTO_SRV ;Vector I2C-interrupt

;main processor

SLAVE_ADR EQU 55H

I2C_CLOCK EQU 00011100B ;12.00MHz/90kHz
0000H iAddress of PCD8584. This

ijmust be an EVEN number!!
;Define addresses of I2C peripherals

PCD8584

PCF8583R

PCF8583W

PCF8591R

PCF8591W

PCF8577W

SAA1064W-

H

MAIN: MOV SP, #STACK-1

EQU

EQU
EQU
EQU
EQU
EQU

EQU

10100011B ;Address
jactive
10100010B ;Address
;active
10011111B ;Address
jactive
10011110B ;Address
;active
01110100B ;Address
;active
01110110B ;Address
;active

97

PCF8583

PCF8583

PCF8591

PCF8591

PCF8577

SAA1064

;Own slaveaddress is 55h

with Read
with Write
with Read
with Write
with Write

with Write

;Define stack pointer

iDefine I2C clock, own slave address and address for

Philips Semiconductors Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

ASM51 TSW ASSEMBLER Demo program for PCD8584 I2C-routines
LOC OBJ LINE SOURCE

50 ;Initialize 80C31 interrupt registers for I2C
;interrupt (INTO/)

0003: D2A8 51 SETB EX0 ;Enable interrupt INTO/
0005: D2AF 52 SETB EA ;Set global enable
0007: D2B8 53 SETB PX0 ;Priority level is ’‘1°
0009: D288 54 SETB ITO ;INTO/ on falling edge
55 ;Initialize PCD8584
000B: 120000 R 56 CALL I2C_INIT
57
000E: 751500 R 58 MOV CHANNEL, #00 ;Set AD-channel
59

60 ;Time must be read from PCD8583.
61 ;First write word address and control register of

;PCD8583.
0011: D200 R 62 SETB DIR ;DIR='transmission’
0013: 750000 K 63 MOV BASE, #TABLE ;Start address I2C data
0016: 750002 R 64 MOV NR_BYTES, #02H ;Send 2 bytes
0019: 7500A2 R 65 MOV SLAVE, #PCF8583W
001C: E4 66 CLR A
001D: F500 R 67 MOV TABLE,A ;Data to be sent (word
;address) .
001F: F501 R 68 MOV TABLE+1,A H " (control
ibyte)
0021: 120000 R 69 CALL START ;Start transmission.
0024: 3000FD R 70 FIN_1: JNB I2C_END,FIN_1 ;Wait till transmission
;finished
71 ;Send word address before reading time
0027: D200 R 72 REPEAT: SETB DIR ;'transmission
0029: 750000 R 73 MOV BASE, #TABLE ;I2C data
002C: 7500A2 R 74 MOV SLAVE, #PCF8583W
002F: 7401 75 MOV A, #01 R
0031: F500 R 76 MOV NR_BYTES,A ;Send 1 byte
0033: F500 R 77 MOV TABLE,A ;Data to be sent is ‘1’
0035: 120000 R 78 CALL START ;Start I2C transmission
0038: 3000FD R 79 FIN_2: JNB I2C_END,FIN_2 ;Wait till transmission
;finished
80
81 ;Time can now be read from PCD8583. Data read is
82 ;hundredths of sec’s, sec’s, min’s and hr’s
003B: C200 R 83 CLR DIR ;DIR='receive’
003D: 750000 R 84 MOV BASE, #TABLE ;I2C table
0040: 750004 R 85 MOV NR_BYTES, #04; 4 bytes to receive
0043: 7500A3 R 86 MOV SLAVE, #PCF8583R
0046: 120000 R 87 CALL START ;Start I2C reception
0049: 3000FD R 88 FIN_3: JNB I2C_END,FIN_3 ;Wait till finished
89 ;
90 ;Transfer data to R2...R5
004C: 7800 R 91 MOV RO, #TABLE ;Set pointers
004E: 7902 92 MOV R1, #02H ;jPointer R2
0050: E6 93 TRANSFER:MOV A, @RO
0051: F7 94 MOV @R1,A
0052: 08 95 INC RO
0053: 09 96 INC R1
0054: D500F9 R 97 DJNZ NR_BYTES, TRANSFER
0057: ED 98 MOV A,R5 ;Mask of hour counter
0058: 543F 99 ANL A, #3FH
005A: FD 100 MOV R5,A
101

102 ;Data must now be displayed on LCD display.

103 ;First minutes and hours (in R4 and R5) must be

104 ;converted from BCD to LCD segment data.The segment
;data

105 ;will be transferred to TABLE. RO is pointer to table

April 1990 %8

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller

to 80C51 family microcontrollers

AN425

ASM51 TSW

Loc

005B:
005D:
005F:

0063:

0066:
0067:
0068:
006A:

006D:
006D:
006F:
0072:
0075:
0078:

007B:
007E:

0080:

0083:
0084:
0085:

0088:
0089:
008C:
008D:
008E:
0091:
0092:
0095:

0096:
0098:
0099:
009A:
009B:

009cC:
009C:
009F:
00A2:
00A5:

OBJ

7800
7600
08

430301

EB

13
4003
430101

D200

750000
750005
750074
120000

3000FD
8026

90009C

ED
c4
120096

ED
120096
EC
c4
120096
EC
120096
22

FC60DA
F266B6
3EEOFE
E6

April 1990

oW ™

)

ASSEMBLER

Demo program for PCD8584 I2C-routines

LINE SOURCE

106
107
108
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128

129
130
131
132
133

134
135

136
137
138

139
140
141
142
143
144
145
146
147
148

149
150
151
152
153

155
156
157
158
159
160
161

i

;Switch

;If 1sb

i

MOV RO, #TABLE
MOV @RO, #00H

on dp between hours and minutes

ORL TABLE+3, #01H

of seconds is ‘0’ then switch on dp.

MOV A,R3
RRC A
JC PROCEED

ORL TABLE+1,#01H;switch on dp

iControl word for PCF8577
INC RO 0060: 120080

R

109

;Get seconds

i1sb in carry

CALL CONV

iNow the time (hours,minutes) can be displayed on

;the LCD
PROCEED:

i
FIN_4:

i

Pl R S vV PN
i

SETB DIR
MOV BASE, #TABLE

MOV NR_BYTES, #05H

;Direction ’transmit’

MOV SLAVE, #PCF8577W

CALL START

JNB I2C_END,FIN_4

JMP ADCON

iStart transmission

iProceed with AD-conversion
;part

iRoutines used by clock part of demo

i

;CONV converts hour and minute data to LCD data and

istores
;it in T
CONV :

;

'ABLE.

MOV DPTR, #LCD_TAB ;Base for LCD segment
;table
iHours to accu

MOV A,R5
SWAP A
CALL LCD_DATA

MOV A,R5

CALL LCD_DATA
MOV A, R4

SWAP A

CALL LCD_DATA
MOV A,R4

CALL LCD_DATA
RET

iSwap nibbles
iConvert 10’s hours to LCD

;data in table
iGet hours

;Get minutes

;jConvert 10‘s minutes

;Convert minutes

;LCD_DATA gets data from segment table and stores it

;in TABL

E

LCD_DATA:ANL A, #0FH

i

MOVC A, @A+DPTR
MOV @RO,A

INC RO

RET

iMask off LS-nibble
iGet LCD segment data
iSave data in table

;LCD_TAB is conversion table for LCD

LCD_TAB:

DB OFCH, 60H, 0DAH;
DB OF2H, 66H, 0B6H;

DB 3EH, OEOH, OFEH
DB OE6H

i
i
i

RSNy
130,040,150
TR TNTY
Y

99

Philips Semiconductors Application note

Interfacing the PCD8584 [2C-bus controller
to 80C51 family microcontrollers

AN425

ASM51 TSW ASSEMBLER Demo program for PCD8584 I2C-routines

LocC OBJ LINE SOURCE

162 I.************)\'***k**********
163
164 ;
165 ;These part of the program reads an analog
; input—-channel.
166 ;Displaying is done on the LED-display
167 ;On odd-seconds the channel number will be

;displayed.
168 ;On even-seconds the analog value of this channel is
;displayed
169 ;Then the next channel is displayed.
170 ;
00A6: EB 171 ADCON: MOV A,R3 ;Get seconds
00A7: 13 172 RRC A ;1sb to carry
00A8: 503C 173 JNC NEW_MEAS ;Even seconds; do a
;measurement on the current
;channel
174
175 ;Display and/or update channel
00AA: 33 176 RLC A ;Restore accu
00AB: B51402 R 177 CJNE A, PREVIOUS,NEW_CH ;If new seconds,
;update channel number
00AE: 800A 178 JMP DISP_CH
00BO: 0515 R 179 NEW_CH: INC CHANNEL
00B2: E515 R 180 MOV A, CHANNEL ;If channel=4 then
;channel:=0
00B4: B40403 181 CJINE A, #04,DISP_CH
00B7: 751500 R 182 MOV CHANNEL, #00
00BA: 8Bl4 R 183 DISP_CH:MOV PREVIOUS,R3 ;Update previous seconds
00BC: E515 R 184 MOV A, CHANNEL ;Get segment value of
;channel
00BE: 900193 R 185 MOV DPTR, #LED_TAB
oocl: 93 186 MOVC A, @A+DPTR
187
00c2: 7800 R 188 MOV RO, #TABLE ;Fill table with I2C data
00C4: 7600 189 MOV @RO, #00 ;SAA1064 instruction byte
00c6: 08 190 INC RO
00C7: 7677 191 MOV @RO, #77H ;SAA1064 control byte
00Cc9: 08 192 INC RO
00CA: F6 193 MOV @RO,A ;Channel number
00CB: E4 194 CLR A
oocc: 08 195 INC RO
00CD: F6 196 MOV @RO,A ;Second digit
00CE: 08 197 INC RO
00CF: F6 198 MOV @RO,A ;Third digit
00D0: 08 199 INC RO
00D1l: F6 200 MOV @RO,A ;Fourth byte
201 ;
00D2: D200 R 202 SETB DIR ;I2C transmission of channel
;number
00D4: 750000 R 203 MOV BASE, #TABLE
00D7: 750006 R 204 MOV NR_BYTES, #06H
00DA: 750076 R 205 MOV SLAVE, #SAA1064W
00DD: 120000 R 206 CALL START
207
00EO: 3000FD R 208 FIN_5: JNB I2C_END,FIN_5
00E3: 020027 R 209 JMP REPEAT ; Repeat clock and AD cycle
; again
210
211

April 1990 100

Philips Semiconductors

Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

ASM51 TSW ASSEMBLER Demo program for PCD8584 I2C-routines
LoC OBJ LINE SOURCE

212 ;Measure and display the value of an AD-channel
O0E6: 120108 R 213 NEW_MEAS: CALL AD_VAL ;Do measurement

214 ;Wait till values are available
00E9: 3000FD R 215 FIN_6: JNB I2C_END,FIN_6

216 ;Relevant byte in TABLE+1l. Transfer to AN_VAL

00EC: 7801 R 217 MOV RO, #TABLE+1
OOEE: 8616 R 218 MOV AN_VAL, @RO
00F0: ES516 R 219 MOV A,AN_VAL ;Channel value in accu for
;jconversion
220 ;AN_VAL is converted to BCD value of the measured
;jvoltage.
221 ;Input value for CONVERT in accu
222 ;Address for MSByte in R1
00F2: 7917 R 223 MOV R1, #CONVAL
00F4: 120154 R 224 CALL CONVERT
225 ;Convert 3 bytes of CONVAL to LED-segments
00F7: 900193 R 226 MOV DPTR, #LED_TAB ;Base of segment table
00FA: 7817 R 227 MOV RO, #CONVAL
00FC: 12018aA R 228 CALL SEG_LOOP
229 ;Display value of channel to LED display
00FF: 12012C R 230 CALL LED_DISP

0102: 3000FD R 231 FIN_8: JNB I2C_END,FIN_8 ;Wait. till I2C
;transmission is ended
0105: 020027 R 232 JMP REPEAT iRepeat clock and AD cycle
233

234 Rk K R A K K K R Kk kR A AR K AR KAk AR AR AR AR IR KAk ko k ko k ok kk ok ko k ek ok ok
;

235 ;Routines used for AD converter.

236 ;
237 ;AIN reads an analog values from channel denoted by
; CHANNEL .
238 ;Send controlbyte:
0108: D200 R 239 AD_VAL: SETB DIR ;I2C transmission
010A: 7800 R 240 MOV RO, #TABLE ;Define control word
010C: A615 R 241 MOV @RO, CHANNEL
010E: 750000 R 242 MOV BASE, #TABLE ;Set base at table
0111: 750001 R 243 MOV NR_BYTES, #01H ;Number of bytes to be
;send
0114: 75009E R 244 MOV SLAVE, #PCF8591W ;Slave address PCF8591
0117: 120000 R 245 CALL START ;Start transmission of
;jcontrolword
011A: 3000FD R 246 FIN_7: JNB I2C_END,FIN_7 ;Wait until transmission is
;finished
247 ;Read 2 data bytes from AD-converter
248 ;First data byte is from previous conversion and not
249 ;relevant
011D: C200 R 250 CLR DIR iI2C reception
011F: 750000 R 251 MOV BASE, #TABLE ;Bytes must be stored in
;i TABLE
0122: 750002 R 252 MOV NR_BYTES, #02H; Receive 3 bytes
0125: 75009F R 253 MOV SLAVE, #PCF8591R ;Slave address PCF8591
0128: 120000 R 254 CALL START
012B: 22 255 RET
256 ;
257 ;LED_DISP displays the data of 3 bytes from address
; CONVAL
012c: 258 LED_DISP:
012C: 431780 R 259 ORL CONVAL, #80H ;Set decimal point
012F: 7800 R 260 MOV RO, #TABLE
0131: 7917 R 261 MOV R1, #CONVAL
0133: 7600 262 MOV @RO, #00 ;SAAL064 instruction byte
0135: 08 263 INC RO

April 1990 101

Philips Semiconductors Application note

Interfacing the PCD8584 [2C-bus controller
to 80C51 family microcontrollers

AN425

ASM51 TSW ASSEMBLER Demo program for PCD8584 I2C-routines

LOC OBJ LINE SOURCE
0136: 7677 264 MOV @RO,#01110111B ;SAA1064 control byte
0138: 08 265 INC RO
0139: 7600 266 MOV @RO, #00 ;First LED digit
013B: 08 267 INC RO
013C: 120185 R 268 CALL GETBY ;Second digit
013F: 120185 R 269 CALL GETBY ;Third digit
0142: 120185 R 270 CALL GETBY ;Fourth digit
0145: D200 R 271 SETB DIR ;I2C transmission
0147: 750000 R 272 MOV BASE, #TABLE
014A: 750006 R 273 MOV NR_BYTES, #06
014D: 750076 R 274 MOV SLAVE, #01110110B
0150: 120000 R 275 CALL START ;Start I2C transmission
0153: 22 276 RET
277
278 ;CONVERT calculates the voltage of the analog value.
279 ;Analog value must be in accu
280 ;BCD result (3 bytes) is stored from address stored
;in R1
281 ;Calculation: AN_VAL*(5/256)
0154: 75F005 282 CONVERT:MOV B, #05
0157: A4 283 MUL AB
284 ;b2..b0 of reg. B : 2E+2..2E0
285 ;b7..b0 of accu : 2E-1..2E-8
0158: A7F0 286 MOV @R1,B ;Store MSB (10E0O-units)
015A: 09 287 INC R1
015B: 7700 288 MOV @R1, #00 ;Calculate 10E-1 unit
; (L0E-1 is 19h)
015D: B41C02 289 TEN_CH: CJINE A, #19H+03H,Vl1 ;Check if accu <= 0.11
0160: 8002 290 JMP TENS ;accu=0.11; update tens
0162: 4006 291 Vl: JC NX_CON saccu<0.11; update hundreds
0164: C3 292 TENS: CLR C ;Calculate new value
0165: 9419 293 SUBB A, #19H
0167: 07 294 INC @R1 ;Update BCD byte
0168: 80F3 295 JMP TEN_CH

296 ;Correction may be necessary. With 8 bits ‘0.1’ is

;in fact 0.0976.

297 ;A digit of ‘OA’ may appear. Correct this by
;decrementing the digit.

298 ;The intermediate result result must be corrected
;with 10*(0.1-0.0976)

299 ;This is 06H

016A: B70A03 300 NX_CON: CJNE @R1,#0AH, PROC_CON ; If digit is ‘OA’
;then correct

016D: 17 301 DEC @R1
016E: 2419 302 ADD A, #19H
0170: 09 303 PROC_CON:INC R1
0171: 7700 304 MOV @R1, #00 ;Calculate 10E-2 units
0173: B40302 305 HUND: CJNE A, #03H,V2 ;Check if accu <= 10E-2
0176: 8002 306 JMP HUNS ;accu=10E-2; update hundreds
0178: 4006 307 V2: JC FINISH ;accu<lQE-2; conversion
;finished
017A: C3 308 HUNS: CLR C ;Calculate new value
017B: 9403 309 SUBB A, #03H
017D: 07 310 INC @R1 ;Update BCD byte
017E: 80F3 311 JMP HUND
0180: B70A01 312 FINISH: CJINE @R1,#O0AH,FIN ;Check if result is 'OA’.
;Then correct.
0183: 17 313 DEC @R1
0184: 22 314 FIN: RET
315
316 ;CALLBY transfers byte from @R1 to @RO
0185: E7 317 GETBY: MOV A,@R1
0186: F6 318 MOV @RO,A

April 1990 102

Philips Semiconductors Application note

Interfacing the PCD8584 12C-bus controller
to 80C51 family microcontrollers

AN425

ASM51 TSW ASSEMBLER Demo program for PCD8584 I2C-routines

Loc OBJ LINE SOURCE

0187: 08 319 INC RO

0188: 09 320 INC R1

0189: 22 321 RET
322 ;

323 ;SEG_LOOP converts 3 values to segment values.
324 ;RO contains address of source and destination
325 ;DPTR contains base of table

018a: 7903 326 SEG_LOOP: MOV R1,#03 ;Loop counter
018C: E6 327 INLOOP: MOV A, @RO iGet value to be displayed
018D: 93 328 MOVC A,@A+DPTR ;Get segment value from
itable
018E: F6 329 MOV @RO,A iStore segment data
018F: 08 330 INC RO
0190: D9FA 331 DJNZ R1, INLOOP
0192: 22 332 RET
333 ;
334
335 ;LED_TAB is conversion table for BCD to LED segments
0193: 336 LED_TAB:
0193: 7D483E 337 DB 7DH,48H,3EH ; '0’,’1',’2"
0196: 6E4B67 338 DB 6EH,4BH,67H ; '3’,’4','5"
0199: 734C7F 339 DB 73H,4CH,7FH ; ‘6’','7’,'8"
019C: 4F 340 DB 4FH ;9
341
342 ;***********‘k******************************‘k*****************
343
——— 344 RSEG RAMTAB
0000: R 345 TABLE: DS 10
346 ;
000A: 347 END

April 1990 103

Philips Semiconductors

Application note

/

Using the 8XC751/752 in multimaster I2C applications

AN430

f

INTRODUCTION

The Philips Semiconductors 83C751/87C751 offers the advantages
of the 80C51 architecture in a small package and ata low cost. It
combines the benefits of a high performance microcontroller with
on-board hardware supporting the Inter Integrated Circuit (12C) bus
interface.

The Inter IC (I2C) bus developed by Philips allows integrated circuits
to communicate directly with each other via a simple bidirectional
2-wire bus. The comprehensive family of CMOS and bipolar ICs
incorporating the on-chip 12C interface offers many advantages to
designers of digital control for industrial, consumer and
telecommunications equipment.

Interfacing the devices in an 12C based system is very simple as
they connect directly to the two bus lines: a serial data line (SDA)
and a serial clock line (SCL). System design can rapidly progress
from block diagram to final schematics, as there is no need to
design bus interfaces. In addition, functional blocks on the block
diagram correspond to actual ICs. A prototype system or a final
product version can be easily modified or upgraded by ‘clipping’ or
‘unclipping’ ICs to or from the bus. The simplicity of designing with
the 12C bus does not reduce its effectiveness: it is a reliable,
multimaster bus with integrated addressing and data-transfer
protocols. The 12C-bus compatible ICs give cost reduction benefits
through smaller IC packages and a minimization of PCB traces and
glue logic.

The availability of microcontrollers, like the 83C751, with on-board
12C interface is a very powerful tool for system designers. The
integrated protocols allow systems to be completely software
defined. Software development time of different products can be
reduced by assembling a library of re-usable software modules. In
addition, the multimaster capability allows rapid testing and
alignment of end-products via external connections to an
assembly-line computer.

The mask programmable 83C751 and its EPROM version, 87C751,
can operate as a master or a slave device on the 12C small area
network. In addition to the efficient interface to the dedicated

function ICs in the I2C family the on-board interface facilitates /0
and RAM expansion, access to EEPROM, and
processor-to-processor communications.

The 83C752 and its EPROM version, 87C752, are essentially the
83C751/87C751 with the addition of a five channel multiplexed 8-bit
A/D converter and an 8-bit PWM output. As the 12C bus interface is
identical, the programming example and the discussion relates to
both processors. The multimaster capability of the 12C bus allows
easy integration and expansion of relatively complex systems, in
which different devices can independently initiate data transfers.
Integration of a multimaster system is easy as a Master on the bus
does not have to coordinate its data transfer with other potential
Master devices—arbitration and synchronization are taken care of
by the hardware and bus protocols. Expanding a system with a new
device is trivial—it is “clipped” onto the two serial bus lines, and the
new device may act as a Master without any modification to the
other devices (see Figure 1). Microcontrollers like the S8XC751/752
on the I2C bus are extremely powerful, as they can be programmed
to be both Masters and Slaves in the same system. This way the
microcontroller may initiate communication on the bus, and when
requested, will respond to a data transfer request by another device.

In this Application Note we shall discuss the most important
technical features of the 12C bus and describe the special [2C
hardware interface of the 8XC751/752. We shall demonstrate with
an example how the microcontroller can be programmed for a
multimaster environment. The communications routines of the
example are quite general, and can be ported to many
applications—so we shall discuss in detail the software interface to
these routines.

The description of the 8XC751 12C interface hardware and part of
the general discussion of the 12C bus is similar to Application Note
AN422 which dealt with the microcontroller in a single-master
environment. Most of the added discussions relate to the
multimaster aspects of the bus. Additional information for the I2C
bus and the 83C751/752 Microcontroller can be found in the Philips
Semiconductors Microcontroller Data Handbook (1C20).

MICRO- LCD STATIC
CONTROLLER DRIVER RAM OR
A EEPROM
\—
SDA |
L} L]
SCL | |
MICRO-
GATE CONTROLLER
ARRAY ADC B
R I S

SU00385

Figure 1. Example of an I12C-bus Configuration

1992 Jun 26

Revision date: June 1993

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I2C applications

AN430

+Vp
Pull-up P4 e L
Resistors Rp :: :: Rp
(Serial Data Line)
SDA
(Serial Clock Line)
scL ’
L i il S R el) U p——
' [SCLK '
1 ! i 1
1 l 1 '
' SCIR1 DATA1 o .
' Out Out b Out Out :
' = ! t - 3
: Do !
! SCLK DATA o SCLK DATA !
! In In o in in !
I - .
e e e e e e e e . B e e e e e e el f
SU00386
Figure 2. Connection of 12C-bus Devices to the I2C-bus
THE 12C BUS the bus. A microcontroller may act as a master for one transfer, and

The two lines of the I12C bus are a serial data line (SDA) and a serial
clock line (SCL). A typical system configuration is shown in Figure 2.
Each device is recognized by a unique address—whether it is a
microcomputer, LCD driver, memory or keyboard interface—and can
operate as either a transmitter or a receiver, depending on the
function of the device. A device generating a message or data is a
transmitter, and a device receiving the message or data is a
receiver. Obviously, a passive function like an LCD driver could only
be a receiver, while a microcontroller or a memory can both transmit
and receive data.

Every device connected to the bus must have an open-drain or an
open-collector output for both the data (SDA) and the clock (SCL)
lines. Each one of the lines is connected to the positive supply via a
common pull-up resistor (see Figure 2). This implements a
wired-AND function, and each of the bus lines which will have the
HIGH level only if all the output transistors tied to it are switched off.

Data on the 12C bus can be transferred at a rate up to 100kbit/s. The
number of devices connected to the bus is limited only by the
maximum bus capacitance of 400pF. As different technology devices
can be connected to the I12C bus, the levels of the logical 0 (Low)
and logical 1 (High) are not fixed and depend on the appropriate
level of Vpp.

MASTERS AND SLAVES

When a data transfer takes place on the bus, a device can be either
amaster or a slave. The device which initiates the transfer, and
generates the clock signals for this transfer is the master. At that
time any device addressed is considered a slave. It is important to
note that a master could be either a transmitter or a receiver: a
master microcontroller may send data to a RAM acting as a
transmitter, and then interrogate the RAM for its contents acting as a
receiver—in both cases being the master initiating the transfer. In
the same manner, a slave could be both a receiver and a
transmitter.

The I2C is a multimaster bus. It is possible to have in one system
more than one device capable of initiating transfers and controlling

1992 Jun 26

then be the slave for another transfer, initiated by another processor
on the network. The master/slave relationships on the bus are not
permanent, and exist per transfer.

As more than one master may be connected to the bus itis possible
that two devices will try to initiate transfer at the same time.
Obviously, in order to eliminate bus collisions and communications
chaos, an arbitration procedure is necessary. The 12C design has an
inherent arbitration and clock synchronization procedure relying on
the wired-AND connection of the devices on the bus. In a typical
multimaster system, a microcontroller program should allow it to
gracefully switch between master and slave modes and preserve
data integrity upon loss of arbitration.

DATA TRANSFERS

One data bit is transferred during each clock pulse (Figure 3). The
data on the SDA line must remain stable during the HIGH period of
the clock pulse in order to be valid. Changes in the data line at this
time will be interpreted as control signals. A HIGH-to-LOW transition
of the data line (SDA) while the clock signal (SCL) is HIGH indicates
a Start condition, and a LOW-to-HIGH transition of the SDA while
SCL is HIGH defines a Stop condition (Figure 4). The bus is
considered to be busy after the Start condition and free again a
certain time after the Stop condition. The Start and Stop conditions
are always generated by the master.

The number of data bytes transferred between the Start and Stop
condition from transmitter to receiver is not limited. Each byte, which
must be eight bits long, is transferred serially with the most
significant bit first, and is followed by an acknowledge bit (Figure 5).
The clock pulse related to the acknowledge bit is generated by the
master. The device that acknowledges has to pull down the SDA
line during the acknowledge clock pulse, while the transmitting
device releases the SDA line (HIGH) during this pulse (Figure 6).

A slave receiver must generate an acknowledge after the reception
of each byte, and a master must generate one after the reception of
each byte clocked out of the slave transmitter. If a receiving device
cannot receive the data byte immediately, it can force the transmitter

105

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster [2C applications

AN430

into a wait state by holding the clock line (SCL) LOW. When
designing a system it is necessary to take into account cases when

acknowledge is not received. This happens, for example, when the SDA /

addressed device is busy in a real time operation. In such a case
the master, after an appropriate “time-out”, should abort the transfer
by generating a Stop condition, allowing other transfers to take
place. These “other transfers” could be initiated by other masters in scL

a multimaster system or by this same master. DATALINE | CHANGE
STABLE: | OF DATA |
An exception to the “acknowledge after every byte” rule occurs | DATA VALID |ALLOWED|

when a master is a receiver: it must signal an end of data to the

Su00361

transmitter by NOT signalling an acknowledge on the last byte that

has been clocked out of the slave. The acknowledge related clock, Figure 3. Bit Transfer on the I2C Bus

generated by the master, should still take place but the SDA line will

not be pulled down. In order to indicate that this is an active and
intentional lack of acknowledgement, we shall term this special r——1

/ SDA

condition as a “Negative ACK". soA | \ |I / _ \

The bus design includes special provisions for interfacing to

microprocessors which implement all the 12C communications in - :—-—L__—/— - L_/:_L -
software only—it is called “Slow Mode”. When all the devices on the scL I N I ser

r—=—1
|
H
I

network have built-in 12C hardware support the Slow Mode is L s J :_ P J|
irrelevant. START STOP
CONDITION CONDITION
SU00362
Figure 4. Start and Stop Conditions
ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER
——n _ o F——
soa | | -\ /_\ | |
| - -r=- = |
MSB
| | | |
| | | |
st | ¢ | 1 2____ 3-8 9 [
L1 ACK L——4d
START STOP
CONDITION BYTE COMPLETE, CLOCK LINE HELD LOW CONDITION
INTERRUPT WITHIN WHILE INTERRUPT
RECEIVER 1S SERVICED
SU00363
Figure 5. Data Transfer on the I2C Bus
——1 _
DATA OUTPUT BY | |
TRANSMITTER | _
DATAQUTPUT | | T
BY RECEIVER | |
SCL FROM MASTER | s | 1 2 7 8 9
L—— -
START ?
CONDITION
CLOCK PULSE FOR ACKNOWLEDGMENT
SU00387

Figure 6. Acknowledge on the 12C Bus

1992 Jun 26 106

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster 12C applications AN430

vs. L J |1 Il I L il I P

t- ADDRESS RW ACK DATA ACK DATA ACK - s

START STOP
CONDITION CONDITION
SU00365

Figure 7. A Complete Data Transfer on the 12C-Bus

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)
MASTER WRITE: "
| s [SLAVE ADDRESS | wla l DATA l A [DATA I A P—l

DATA TRANSFERRED
(n BYTES + ACIKNOWLEDGE)

MASTER READ:

Ls l SLAVE ADDRESS I R| A I DATA l A I DATA | NA| P]
(n BYTES + (n BYTES +
ACKNOWLEDGE) ACKNOWLEDGE)
COMBINED FORMATS: \ v \
L s | SLAVE ADDRESS | RW l A DATA l als I SLAVE ADDRESS l RW I A DATA ' A P—I
DIRECTION OF TRANSFER MAY-

S START CHANGE AT THIS POINT

W= WRITE

R= READ

RW = READ OR WRITE

I S —

- A SU00366
Figure 8. 12C Data Formats

ADDRESSING AND TRANSFER FORMATS portions. In addition to the “standard” addressing discussed here,
Each device on the bus has its own unique address. Before any the 12C bus protocol allows for “general call” addressing and
data is transmitted on the bus, the master transmits on the bus the interfacing to CBUS devices.

address of the slave of this transaction. A well-behaved slave, if it
exists on the network, should of course acknowledge the master’s
addressing. The addressing is done with the first byte transmitted by indicate either direction. After completing the transfer and issuing a

the master after the Start condition. Stop condition, if a master would like to address some other device
An address on the network is seven bits long, appearing as the most on the network, it could start another transaction by issuing a new
significant bits of the address byte. The last bit is a direction (RW) Start.

bit. A zero indicates that the master is transmitting (WRITE) and a
one indicates that the master requests data (READ). A complete

When the master is communicating with one device only, data
transfers follow the format of Figure 8 where the R/W bit could

Another way for a master to communicate with several different

data transfer, comprised of an address byte indicating a WRITE and devices wolt"d be by using a re;?eateq sta.rt‘. After the last byte of
two data bytes is shown in Figure 7. the tra'nsactlon was transfer.red, mcludl'ng its acknowledge (or
Negative ACK), the master issues again a Start, followed by
When an address is sent, each device in the system compares the address byte and data, without effecting a Stop. The master may
first seven bits after the Start with its own address. If there is a communicate with a number of different devices, combining READS
match, the device will consider itself addressed by the master and and WRITES. Only after the transfer with the last slave took place,
will send an acknowledge. The device could also determine if in this the master issues a Stop and releases the bus. Possible data
transaction it is assigned the role of a slave receiver or slave formats are demonstrated in Figure 8. Note that the repeated start
transmitter, depending on the R/W bit. allows for both change of a slave and a change of direction, without
Each node of the I2C network has a unique seven bit address. The releasing the bus. We shall see later on that the change of direction
address of a microcontroller is, of course, fully programmable, while feature can come in handy even when dealing with a single device.

peripheral devices usually have fixed and programmable address

1992 Jun 26 107

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster I12C applications AN430

In a single master system the repeated start mechanism is more beginning of a sequence of locations for a multi-byte transfer. A
efficient than terminating each transfer with a Stop and starting sub-address is an eight bit byte, unlike the device address it does
again. In a multimaster environment the determination of which not contain a direction (R/W) bit, and like any byte transferred on the
format is more efficient could be more complicated, as when a bus it must be followed by an acknowledge.

master is using repeated starts it occupies the bus for a long time

and prevents other devices from initiating transfers. A memory write cycle is shown in Figure 9(a). The Startis followed

by a slave byte with the direction bit set to WRITE, a sub-address
byte, a number of data bytes and a Stop signal. The sub-address is
USE OF SUB-ADDRESSES loaded into the word address memory. The data bytes which follow
For some ICs on the 12C bus the device address alone is not wil b'e written one after t{le.other starting with (h? sub-address
sufficient for effective communications and a mechanism for location and the register is incremented automatically.

addressing the internals of the device is necessary. A typical The memory read cycle (Figure 9(b)) commences in a similar
example is addressing memories, when we want to access a manner with the master sending a slave address with the direction
specific word inside the device or a sequence of memory locations bit set to WRITE with a following sub-address. Then, in order to
starting at a specific internal address. reverse the direction of the transfer, the master issues a repeated

Start followed again by the memory device address, but this time
with the direction bit set to READ. The data bytes starting at the
internal sub-address will be clocked out of the device with each
followed by a master-generated acknowledge. The last byte of the
read cycle will be followed by a Negative ACK, signalling the end of
transfer. The cycle is terminated by a Stop signal.

A typical 12C memory device like the PCF8570 RAM contains a
built-in word address register that is incremented automatically after
each read or written data byte. When a master communicates with
the PCF8570 it must send a sub-address in the byte following the
slave address byte. This sub-address is the internal address of the
word the master wants to access for a single byte transfer or the

ACKNOWLEDGE ACKNOWLEDGE ACKNOWLEDGE
- FROM SLAVE FROM SLAVE FROM SLAVE
F l SLAVE ADDRESS | 0 | A lwono ADDRESSl A DATA A I ﬂ
A
— nBYTES —|
RW

AUTO-INCREMENT
MEMORY WORD ADDRESS
MASTER TRANSMITS TO SLAVE RECEIVER

(a)
ACKNOWLEDGE ACKNOWLEDGE ACKNOWLEDGE
FROM SLAVE FROM SLAVE FROM SLAVE
‘ s | SLAVE ADDRESS I 0 l A lwonomonsss' A l s l SLAVE ADDRESS I 1 l A
AW AUTO-INCREMENT
MEMORY WORD ADDRESS
NO ACKNOWLEDGE
FROM MASTER
DATA A | DATA | 1 ‘ 3 I
A A
MASTER TRANSMITTER BECOMES [~ nBYTES — LAST BYTE
P S
AUTO-INCREMENT
TRANSMITTER MEMORY WORD ADDRESS

MASTER READS AFTER SETTING WORD ADDRESS
(WRITE WORD ADDRESS; READ DATA)

(b)

SU00367

Figure 9. 12C Sub-Address Usage

1992 Jun 26 108

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications

AN430

Start Counting
High Period
fe— Wait ——— —
CLK
1
CLK
2
SCL
SU00388
Figure 10. Clock Synchronization During the Arbitration Procedure
Transmitter 1 Loses Arbitration
Data 1 SDA
Data e
1
Data ! k !
2 X /_
SDA ./ N\ .
. __/—_/__/__/—_/—_/__
! .
J— N N . —
SU00388

Figure 11. Arbitration Procedure of Two Masters

ARBITRATION IN A MULTIMASTER SYSTEM

The decision about which master has control over the I12C bus is
based solely on the address and data sent by competing masters,
and there is no central master or any order of device priority on the
bus. Any device connected to the I2C bus is allowed to become a
master, but devices are not supposed to “steal” the bus from other
devices when a transfer is in process. If a device wishing to be a
Master is aware that a transaction (initiated by another master) is
taking place, it will wait until the transfer is concluded with a Stop
condition on the bus—and only then try to seize it by sending its
own Start. It is possible, however, that two or more masters may
want to start a transfer at exactly the same moment. A scenario that
may happen quite frequently in a loaded system: two devices are
waiting for a long transaction to be completed, and simultaneously
try to get the bus when detecting the Stop condition. An arbitration
procedure synchronizes the different clocks, ensuring that the data
is not corrupted, and causes all masters except one to withdraw
from the bus, so only one master will control the transfer. This
procedure applies only when masters initiate transfers
simultaneously.

The clock synchronization, illustrated in Figure 10, ensures that only
one defined clock is generated on the bus. It occurs naturally, as a
result of the wired-AND property of the SCL line. Suppose two
masters want to initiate a transfer on the bus. Clk1 and Clk2 in
Figure 10 illustrate the desired clock outputs of each device, which
would actually occur on the bus if each were the only master. The
SCL waveform is the resulting wired-AND of the two clocks. The
device that pulls the SCL down first will succeed. The other masters

1992 Jun 26

continuously monitor the clock line, and reset their internal clock
counter to start counting their own Low clock period. This way, the
first falling edge will synchronize all clock generators to the
beginning of the Low time.

Once a device clock has gone Low it will hold the SCL line in this
state until its internal clock High state is reached, and then will
release the line. The Low to High change in this device will not
change the state of the SCL line if another device, which is still
within its Low period, is pulling down the line. This way, SCL will be
held Low by the device with the longest Low period. A master that
has finished its Low time earlier will enter a wait state until SCL is
released by the slowest master and goes high. Upon the rising edge
of SCL all masters start counting their High period, the first device to
complete its High period will pull the SCL Low. In this way a single,
synchronized clock is generated on the bus where the rising edge is
being defined by the slowest master and the falling edge by the
fastest master.

Arbitration between masters takes place on the SDA line. A master
which tries to transmit a High while another device transmits a Low
will withdraw, shutting off its data output stage and not interfering
with the transfer until a Stop condition is detected. Due to the
wired-AND property of the SDA line, a device “knows” that it lost
arbitration by the fact that the Low SDA is different than its desired
High output. Arbitration starts by comparing the address bits. When
masters transmit different addresses the one transmitting the
address with the lowest binary value wins. If all masters in
arbitration transmit to the same address, arbitration continues into

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I12C applications

AN430

the comparison of data. Figure 11 illustrates the arbitration process
between two masters.

By definition, the transfer that forces the wired-AND result is the one
that wins the arbitration, so the address and data of a winning
device are not corrupted and no information is lost in the arbitration
process. A master losing arbitration may generate clock pulses until
the end of the byte. Thus it may affect the clock speed, but not the
data on the bus.

If a master loses arbitration during the addressing stage it is
possible that the winning master is trying to address it. In an efficient
design, the losing master should switch immediately to its slave
receiver mode, receive the data transmitted and acknowledge
it—otherwise the message will have to be re-transmitted or is lost. A
well designed master will take into account “illegal” protocol
situations and will determine that it lost arbitration when it detects a
Stop or a Start which are not synchronized with its own
transmission. Electrical interference or a malfunctioning device may
cause such a situation which actually corrupts the message transfer.

HANDSHAKE BY CLOCK SYNCHRONIZATION

The clock synchronization mechanism as described above actually
implements a handshake mechanism, enabling receiving devices to
“slow down” fast transfers when necessary.

On the bit level, a slow slave device like a microcontroller that does
not have hardware 12C interface port, can extend each clock period
and slow down the bus clock. The speed of any master is adapted

to the operating rate of this device as long as it is active on the bus.

On the byte level the synchronization mechanism takes effectas a
“nandshake” mechanism when a slave device that was fast enough
to receive or transmit a byte still needs extra time to store the
received byte or prepare the next byte for transmission. The slave
can hold the SCL line low after the reception and acknowledge ofa
byte, thus forcing the Master into a wait state—until the slave is
ready for the next transfer.

8XC751 I2C HARDWARE

The on-chip 12C bus hardware support of the 8XC751 allows
operation on the bus at full speed and simplifies the software
needed for effective communications on the network. The hardware
activates and monitors the SDA and SCL lines, performs the
necessary arbitration and framing error checks, and takes care of
clock stretching and synchronization. The hardware support
includes a bus timeout timer, called Timer |. The hardware is
synchronized to the software either through polled loops or
interrupts.

Two of the port 0 pins are multi-functional. When the 12C is active,
the pin associated with P0.0 functions as SCL, and the pin
associated with P0.1 functions as SDA. These pins have an open
drain output.

Two of the five interrupt sources may be used for 12C support. The
12C interrupt is enabled by the EI2 flag of the interrupt enable
register, and its service routine should start at address 023h. An 12C
interrupt is usually requested (if enabled) when a rising edge of SCL
indicates new data on the bus or a special condition occurs: Start,
Stop or arbitration loss. The interrupt is induced by the ATN flag,
(see below for the conditions for setting this flag). The Timer |
overflow interrupt is enabled by the ET! flag, and the service routine
starts at 01Bh.

The I2C port is controlled through four special function registers: 12C
Control (I2CON), 12C Configuration (I2CFG), 12C Data (12DAT) and

1992 Jun 26

110

12C Status (I2STA). The register addresses are shown in the
8XC751 section of the Philips Semiconductors Microcontroller Data
Handbook (IC20). Although the following discussion of the hardware
and register details is not complete, it should give a better
understanding of the programming examples.

Timer |

In 12C applications, Timer | is dedicated to the port timing generation
and bus monitoring. In non-I12C applications, it is available for use as
a fixed rate timer.

For the bus monitoring function, Timer | is being used as a
“watchdog timer” for bus hang-ups. It creates an interrupt when the
SCL line stays in one state for an extended period of time between a
Start condition and a following Stop condition. SCL “stuck low”
indicates a faulty master or slave. SCL “stuck high” may mean a
faulty device or that noise induced into the 12C caused all masters to
withdraw from the 12C arbitration.

The time-out interval of Timer | is fixed: it carries out and interrupts
(if enabled) when about 1024 machine cycles have elapsed since a
change on SCL within a frame. In other words, whenever [2C is
active we let Timer | run, but clear it whenever a frame is not in
progress (reset or Stop occurred more recently than the last Start
condition) or SCL changes within a frame. (Note: we wrote “about
1024 machine cycles” for the sake of accuracy—this number may
slightly change according to the setting of the CT0 and CT1 bits
mentioned below. In any case, the exact number of cycles for a time
out does not have any practical significance).

In addition to the interrupt upon Timer | overflow, the 12C port
hardware is reset. This is useful for multiple master systems in
situations where this same 8XC751 caused the bus hang-up due to
alack of software response. SCL will be released and 12C operation
between other devices could continue.

12CON Register

The I2C Control register can be read or written to (see Figure 12).

When writing to the 12CON register one should use bit masks as
demonstrated in the examples. Trying to clear or set the bits in the
register using the bit addressing capabilities of the 8XC751 may
lead to undesirable results. The reason is that a command like
CLRB reads the register, sets the bit and writes it back—and the
write-back may affect other bits.

12CFG Register
The configuration register is a read/write register (see Figure 13).

I2DAT Register

The I2C data register is a read/write register, where the msb
represents the data received or data to be sent. The other seven
bits are read as 0 (see Figure 14).

12CSTA Register
The 12C STAtus Register is a read-only register reflecting the
internal status of the 12C interface hardware (see Figure 15).

Transmit Active State

The transmit active state—Xmit Active—is an internal state in the
12C interface that is affected by the I12C registers as explained
above. The I2C interface will only drive the SDA line low when Xmit
Active is set. Xmit Active is set by writing the I2DAT register or by
writing 12CON with XSTR = 1 or XSTP = 1. The ARL bit will be setto
1 only when Xmit Active is set—in such a case Xmit Active will be
automatically reset upon ARL. Xmit Active is cleared by writing 1 to
CXA at I2CON register or by reading the 12DAT register.

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I2C applications

AN430

CXA
IDLE

I2CON READ | RDAT l ATN | DRDY , ARL | STR l STP l MASTER, — ,
RDAT Received DATa bit. The value of SDA latched by the rising edge of SCL. Its contents is identical to RDAT in the
I2DAT register. Reading the received data here allows doing so without clearing DRDY and releasing SCL.
ATN An “ATteNtion” flag, set when any one of DRDY, ARL, STR or STP is set. This flag allows a single bit testing for
terminating “wait loops”, indicating a meaningful event on the bus. This flag also activates the I°C interrupt request.
DRDY Data ReaDY flag. Set by a rising edge of SCL when I2C is active, except at an idle slave. This flag is cleared by
reading or writing the I2DAT register, or by writing a 1 to CDR (at the same address, when I2CON is written).
ARL ARbitration Loss flag. Indicates that this device lost arbitration while trying to take control of the bus.
STR STaRt flag. Set when a Start condition is detected, except at an idle slave.
STP SToP flag. Set when a Stop condition is detected, except at an idle slave.
MASTER This flag is set when the controller is a bus master (or a potential master, prior to arbitration).

12CON WRITE LCXA I IDLE | CDR ’ CARL ' CSTR , CSTP | XSTR ‘ XST?I

“Clear Xmit Active”. Writing a 1 to CXA clears the internal transmit-active state.

Setting this bit will cause a slave to enter idle mode and ignore the 12C bus until the next Start is detected. If the
software sets the MASTRQ flag, the device may stop idling by turning into a master.

CDR Clear Data Ready. Clears the DRDY flag.
CARL Clear Arbitration Lost. Clears the ARL flag.
CSTR Clear STaRt. Clears the STR flag.
CSTP Clear STop. Clears the STP flag.
XSTR “Xmit repeated STaRt". Writing a 1 to this bit causes the hardware to issue a Repeated Start signal. A side effect
will be setting the internal Xmit Active state. This should be used only when the device is a master.
XSTP “Xmit SToP". Issues a Stop condition. The Xmit active state is set.
SU00368
Figure 12. 12CON Register
l SLAVEN l MASTRQ | CLRTI , TIRUN | — I — l CT1 ' CTo 1
SLAVEN Writing a 1 to this flag enables the slave functions of the I2C interface.
MASTRQ Request control of the bus as a master.
CLRTI Clear the Timer | interrupt flag. This bit is always read as 0.
TIRUN Wiiting a 1 will let Timer | run. When 12C is active, it will run only inside frames, and will be cleared by SCL
transitions, Start and Stop. Writing a 0 will stop and clear the timer.
CT1,CTO These bits should be programmed according to the frequency of the crystal oscillator used in the hardware. They

determine the minimum high and low times for SCL, and are used to optimized performance at different oscillator
speeds.

SU00369

1992 Jun 26

Figure 13. 12CFG Register

m

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I2C applications

AN430

RDAT

12DAT READ rRDATi—l—‘—i_l_l_l_J

Received DATa bit, captured from SDA every rising edge of SCL. Reading I2CAT clears DRDY and the
Xmit Active state. If it is necessary to read the data without affecting the flags, it can be read out of RDAT
in the I2CON register.

12DAT WRITE rXDAT‘—‘—l—-l—‘—l—\—J
XDAT Xmit DATa bit. Writing XDAT determines the data for the next bit to be transmitted on the I2C bus.
Writing I2DAT also clears DRDY and sets the Xmit Active state.
500370
Figure 14. 12DAT Register
12CSTA READ [IDLE | XDATA l XACTV | MAKSTRI MAKSTPl XSTR ‘ XSTP ‘ — l
IDLE Indicates when the I2C hardware is in the Idle mode.
XDATA Reflects the contents of the 12C transmitter buffer.
XACTV Indicates that the I2C transmitter is active.
MAKSTR Indicates that the hardware is effecting a Start.
MAKSTP Indicates that the hardware is effecting a Stop.
XSTR Hardware effecting a Repeated Start.
XSTP Hardware effecting a Stop.
5U00390

Figure 15. 12CSTA Register

12C COMMUNICATIONS SOFTWARE

The software listing demonstrates programming the 8XC751/752 for
a multimaster 12C environment where the device can be both a
Master or a Slave responding to other Masters on the I2C network.
The bulk of the software is communications routines which are not
only for demonstration but could be ported to other user programs
with minimal or no modifications. The routines are quite general and
could be useful in most applications. We have tried to design a
well-defined software interface, enabling most users to copy the
routines as they are, modifying only the pre-defined interface
elements to fit the specific applications. We encourage users to use
the routines without modifications whenever possible, as the lower
levels of the hardware-software integration could be quite involved.

The rest of this application note will relate to the programming
example. We shall discuss the general operation of the routines and
how they are integrated into an application. Then we shall describe
in detail all the software interface elements and how to use them.

12C COMMUNICATIONS ROUTINES—OVERVIEW

In order to function well in a multimaster environment the
microcontroller must be able to take control of the I2C bus as a
Master, “tolerate” message transactions between other Masters and
other devices, and respond efficiently as a Slave to other bus
Masters. The communications routines should allow a Master
“graceful” recovery from an arbitration loss and other situations
when a message transaction is not completed, allowing for
communication re-tries.

1992 Jun 26

For Slave operation the microcontroller must be interrupt driven
relative to an I2C frame Start, as any Master on the bus could
request a transaction at any moment, not synchronized to the
application program executing on the controller. An interrupt service
routine monitors the address transmitted on the bus. When the
microcontroller is addressed it takes care to either read the data
from the bus into a buffer or write buffer data onto the bus. When
such a transaction is successfully completed, one of several “Slave
Event Routines” is called prior to returning to the main application
program. Such an “Event Routine” is a part of the application,
allowing an immediate response to the data received, or the fact that
data was transmitted to a requesting Master. This allows
“synchronization” of the application to a “slave” bus transaction.
Typical uses of the Event Routine mechanism will be a computation
based on new data, or re-loading the transmit buffer with new data
getting ready for the next random request. The actual Event
Routines will be programmed differently for different applications, but
the names and the calls will remain the same as long as the
communications routines are left unmodified.

A transaction as a Master is initiated by the application program. Our
implementation uses the interrupt mechanism for the Master
communications as well. The application issues a request for the
bus by setting the MASTRQ bit of the 12C port control, and when the
bus is available an interrupt occurs. This way, if the bus is free there
will be an immediate response. If the bus is busy, the application
may go on executing (if so programmed) until this controller can get
control of the bus. When the microcontroller gets mastership of the
bus it initiates a bus transaction according to “directives” set by the

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications

AN430

application program. The most important directives are the address
(and subaddress if relevant) of the slave device addressed, and the
length of the message to be transmitted or received.

When a Master transaction is concluded, a Master Event Routine
(called MastNext) is called to perform whatever task the application
demands. As with the Slave Event Routines it will typically respond
to a successful transmission or reception of data. In addition, it could
handle situations where a slave does not respond at all, or does not
acknowledge a data byte (thus causing data transfer to terminate). A
program might react to the fact that a slave does not respond by
re-trying to communicate at a later time, by issuing a message to
another peripheral device or just ignoring it. The handling of such
cases is application dependent, and should be programmed into the
routine called “MastNext”. The MastNext routine is invoked when the
Master terminates the transaction “willingly”, but not upon arbitration
loss.

The microcontroller operating as a bus Master may lose arbitration
to another Master which happens when two Masters transmit in
synchronization, commencing with the same Start signal. If
arbitration is lost while transmitting or receiving data, our processor
withdraws from the bus and turns itself into a slave—an active Slave
upon a Start, or returning to the calling program as an idle slave.
When the arbitration loss occurs while transmitting an address, our
processor turns itself immediately into an active slave, “listening” to
the rest of the address transmitted by the new Master. If our
processor reads its own address from the bus (as transmitted by the
new Master) our processor responds as a willful slave. If this
mechanism would not have been implemented, there could be
potential inefficiency when a device that happened to be
synchronized to another Master loses arbitration, but is not able to
respond to the winning device.

Another situation for arbitration loss could be a bus exception
resulting from a device operating not according to the bus protocol
or interference on the bus lines. In addition to “regular” arbitration
loss detected with the ARL hardware flag, such a situation may
occur with detecting a Start or a Stop in the middle of transmitting an
address or data byte. In such a situation the microcontroller
withdraws from the bus as well—active Slave upon a Start
detection, or returning as an idle slave in other cases.

When a Master transaction is terminated by an arbitration loss, the
Master Request flag (MASTRQ) of the hardware 12C port remains in
effect. As a result when the bus gets free, our device will take
control, issue a Start, and the transaction that was cut will start
again. This restart will happen automatically, without any application
involvement (unlike non-acknowledgement, where the MastNext
routine determines what shall be done).

The 12C communications routines are structured as an interrupt
service routine responding to an 12C port interrupt upon a frame
Start. Within a frame the I12C processing is continuous, where the
12C port s polled for hardware response, and the 12C interrupts are
disabled. Other interrupts are enabled during the service routine.
The set-up requirements from the mainline program are minimal,
and interfacing is done via RAM buffers and some pre defined RAM
locations. The lower level interface with the hardware is done inside
the service routine, and can typically be ignored by the application
programmer.

1992 Jun 26

113

BUS WATCHDOG AND ERROR RECOVERY

A malfunctioning device (in hardware or software) may hold the SCL
line low, thus causing the bus to be “stuck”. It might even be
possible that a transient protocol violation (due to hardware
interference, such as a device turning on) may cause some devices
(non programmable, or even microcontrollers which were not
carefully programmed) to hold the bus. Since within a frame the bus
is software-polled, a “stuck” bus might cause the application
software to “hang forever”. Here the TIMERI watchdog comes to the
rescue, interrupting when there is no bus activity for a long period of
time.

When the I2C service routine is interrupted by the watchdog timer,
the processing of the current frame is not completed and the event
routines are not called. The software returns to execute the mainline
application, and will be interrupted again for the next frame (next
Start, received as a slave or induced as a Master). A status flag and
a counter report on the watchdog interrupt, so the application
program can be made to inhibit the I2C port if there are too many
occurrences of a “hanging” bus.

Bus protocol errors and “hangups” might be an issue in systems
which are susceptible to noise, temporary bus line shorts, “hot plug
in” of devices or even erroneously programmed devices—and a “fail
safe” controller program should be able to detect bus problems and
possibly assist in resolving them. The RECOVER routine resets the
12C interface of the microcontroller, and attempts to release some
other devices on the bus by toggling the clock line. The 12C interface
of the 8XC751 is reset by letting Timerl run and expire, since this
circuitry does not feature a software controlled reset. This “extreme”
measure is needed in some cases of bus protocol violation.

The bus and interface circuit recovery routine can be automatically
invoked whenever Timer! detects a timeout. In addition, for systems
where potential bus failures are a concern and reliability is an issue,
one may implement mechanisms to invoke bus and interface
recovery from the application code. This may help in cases where
the bus gets “stuck” when there is no 12C frame in progress. In such
an instance the watchdog timer will not give any timeout indications,
as it has not been activated. Another case emanates from a design
peculiarity of the interface circuitry on the 8XC751: if the SCL line is
externally grounded when there is a Start condition, this Start might
be ignored, and the watchdog may not be activated. Our
programming example deals with potential failures by testing for
transaction completion and retrying transmissions when necessary
(these are explicit retries, in addition to an “automatic” retry after a
Master’s arbitration loss, invoked by the MASTRQ bit). Too many
transmission failures activate the RECOVER routine.

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications

AN430

12C COMMUNICAT!ONS ROUTINES—INTERFACE
The 12C service routine deals with the transmission and reception of
messages, without any concern for the contents of the message. In
order to provide a general interface for different applications the data
is transferred via buffers. The service routine does not have to
“know” where the data goes to or comes from—as long as the
application program specifies the required pointers for these buffers.
The interface to the actual application (which “cares” about message
contents, timing, addressing and so forth) is done in a well defined
manner, allowing usage of the same service routine with different
application programs.

The interface is carried out with the use of buffers, pre-defined
names for Application Event Routines, interface RAM locations for
transferring parameters, pointers and flags, and constants. A more
detailed discussion of the interface follows.

Buffers
There are three buffers for data transfers between the 12C bus and
the application program.

MasBuf is used for Master transmission and reception. The number
of data bytes for each Master message—reception or transmission,
is specified by the memory location MASTCNT. The value in
MASTCNT should be less than the length of MasBuf. For Master
transmission the message is placed in MasBuf before the
transmission is initiated. In Master reception, the received message
will be contained in the same buffer. There is only one Master
message transaction occurring at the same time, so we may use the
same buffer both for transmission and reception.

For Slave operation we must accommodate data transfers which
may come randomly, asynchronous to each other or to possible
operation of the same device as a Master. Therefore it is necessary
to allocate additional RAM area as buffers dedicated to Slave
operation: SRevBuf for receiving data, STxBuf for transmission.

The length of the Slave receive buffer is defined by the symbol
RBufLen. It is used by the code for protection, avoiding overwriting
RAM beyond the allocated buffer size in case a Master sends a
message which is too long. There is no need for RAM protection for
transmission, but the Master should not request more data than
STxBuf can supply.

Interface RAM Locations
RAM location MyAddr contains the address of this processor.

Status flag MSGSTAT is used for reporting to the application on 12C
communications status—mainly on the successful, or unsuccessful,
completion of a message transaction. The contents of MSGSTAT
may be used by the mainline application code or by the Event
Routines. The different codes that could be placed by the 12C
service routine are described later in the text. When the message
processing commences, a code indicating Slave or Master
processing is inserted to MSGSTAT, and is updated as we go along.

1992 Jun 26

114

There could be many applications that will not need to use
MSGSTAT contents, as the very fact of calling a certain event
routine implies completion of a processing stage.

For Master transactions, in addition to the data buffer MasBuf, there
are several RAM locations into which the application inserts Master
message “directives”. These directives provide the service routine
with the information necessary to carry out the next Master
transaction. The one byte RAM locations used for directives are
DESTADRW, DESSUBAD, MASTCNT and MASCMD.

DESTADRW contains the destination slave address in bits 7-1, while
bit 0 is the R/W bit. Bit 0 contains 0 for a Write operation (the
message is to be transmitted to the salve) and 1 for a Read
operation (message is being read from the slave and received by
this Master).

DESSUBAD contains the 8 bit sub-address of the slave, if
necessary. For transactions without a sub-address, the contents of
DESSUBAD is ignored.

MASTCNT contains the number of data bytes in the message to be
sent from or received into MasBuf. This number should not be
bigger than the length of MasBuf.

MASCMD byte contains the bit flags SUBADD, RPSTRT and
SETMRQ. SUBADD is 0 (cleared) for a message with a regular
address, and 1 (set) when a subaddress is required. When
SUBADD is set, the service routine takes care of all the protocol
required for sub-addressing, which includes a Repeated Start for
Read operations. A message with a subaddress is considered to be
a single message, even if it includes a Repeated Start.

The RPSTRT and SETMRQ are kept cleared in regular applications,
and will be used only for “tailoring” the bus transfers in special
cases. When RPSTRT is cleared the message will terminate, as
usually required, with a Stop. When RPSTRT is set a Repeated
Start will be sent on the bus, and Master operation will resume. The
RPSTRT directive relates to terminating the message after all the
data was transferred, and not to the mandatory Repeated Start in
the middle of sub-addressed Read operation. A single message with
a subaddress will typically have RPSTRT cleared. SETMRQ
indicates what will be loaded into the MASTRQ flag of the hardware
when Stop is transmitted. Typically it will be cleared. When
SETMRQ is 1, MASTRQ will be set, thus trying to issue a new Start
immediately following the Stop. In such a case the service routine
will not return upon Stop, but will continue as a Master.

TITOCNT is used to count time-outs of the watchdog timer.
Whenever such a timeout invokes the TIMER | interrupt service
routine the contents of the location TITOCNT are incremented, and
the timeout is reported in MSGSTAT. The count is saturated at OFFh.
This mechanism may be used in an application that is very much
“concerned” with potential bus failures, allowing some type of “failure
monitoring” by the application even for Slave transactions.

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications

AN430

INITIALIZE AND SET UP
12C COMMUNICATIONS

INTERRUPT

RUN APPLICATION

APPLICATION INITIATES
MASTER TRANSACTION

INTERRUPT

E

12C INTERRUPT
ROUTINE (ISR)-MASTER

]

TRANSACTION
SUCCESSFULLY
COMPLETED
I TRANSACTION
NOT
MASTER ROUTINE COMPLETED
Mastnext
CONTINUE NOTE:
APPLICATION This is a simplified diagram to assist

TRANSACTION
NOT
COMPLETED

12C INTERRUPT
ROUTINE (ISR)-SLAVE

]

TRANSACTION
SUCCESSFULLY
COMPLETED

SLAVE EVENT ROUTINE
STxedR/ScvdR/SLnRcvdR

L]

the text. It is not a flow chart.

SU00391

Figure 16. Typical Communications Scenario—A Simplified Diagram

APPLICATION EVENT ROUTINES

The service routine calls Event Routines with pre-defined names
(Figure 16), and these routines must be provided by the application
program. The actual code of the routines will differ from application
to application, but the routine names are being kept the same.

These routines are being called when successful processing of a
message (send or receive) is completed. The routines may perform
whatever action the application was designed for, which is not
necessarily related to the 12C communications mechanism. In
addition, the routines may perform the data interface tasks for the
12C port, like emptying buffers from received data or preparing the
next message by setting up the buffers.

The mechanism of calling the event routines out of the service
routine allows an immediate reaction to the event of message
processing completion, before any new activity happens on the bus.
In some simple applications this may not be necessary. For
example, one may have a main program for a slave which is just a
wait loop monitoring a flag set by the service routine when a
message transfer, initiated by some master, is completed. In such a
case the application could react to the message completion after the
interrupt service routine retums. However, in the general case this
will not be sufficient. An example could be a slave with an

1992 Jun 26

115

application which is constantly busy doing another task, in an
environment where the communication requests on the 12C bus are
frequent. If there is a new message request shortly after the current
message is completed, having to wait for the application until it “has
time” may result in not reacting, or sending the same data again, or
overwriting the received data in the buffer. Another obvious case
demanding event routine calls is a Master sending different
messages with a Repeated Start—the new data for the following
message must be prepared in the interrupt service routine as the
current message is completed (there is no return from interrupt prior
to the new data transmission).

The programmer has the flexibility to decide where to prepare the
next message according to the requirements of the application. This
can be done after return from the event routine, in the application
code after the return from interrupt, or a combination of both, where
the time critical events are performed in the event routines. The
application may monitor the MSGSTAT flag for message processing
completion. If the event routines are not used, it is recommended to
simply code them as a “RET” instruction, thus turning them into
dummy routines (this an easier and better practice than changing
the service routine itself, eliminating the calls).

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster [2C applications

AN430

Master Event Routine:

MastNext

This routine is called by the service routine when the processing of
the current Master message is completed. For an indication on the
type of message processing completion, MastNext may inspect the
contents of MSGSTAT RAM location.

When MastNext is called, MSGSTAT will contain one of the following
codes for message processing completion:

MRCVED (= 21h)—a complete message (with number of data
bytes indicated by MASTCNT) was received from the slave.

MTXED (= 22h)—the number of data bytes indicated by MASTCNT
were successfully sent and acknowledged by the slave.

MTXNAK (= 23h)—the slave did not acknowledge a data byte of the
message, even though it had acknowledged its address. The
message transmission was terminated upon the NAK.

MTXNOSLYV (= 24h)—no slave acknowledged the address
indicated by memory location DESTADDR.

The MastNext routine may perform any task(s) necessary for the
application. Data handling tasks will typically be dependent on the
MSGSTAT indication. One possible task could be setting the
directives for the next message. The necessity for executing this
task here (versus the main-line code initiating the transfer) is of
course application dependent.

Slave Event Routines:

These routines are called when a message transaction as a slave
has been completed. In many cases it could be important to utilize
the calls to such routines as the requests for message transactions
as a slave can come randomly, asynchronous to the application
program. The application may demand that new data coming in
should immediately initiate some tasks (e.g. control an output
port)—and the event routine can be used to process the result of the
slave interrupt.

In most cases it will be necessary for a slave to reactimmediately to
a message received simply in order not to lose the data. As a new
message may come randomly, it may overwrite the reception buffer
before the data has been transferred out of it or acted upon.

For applications in which the reaction for slave events is performed
after the return from the service routine, the event is reported by
placing an appropriate code in the MSGSTAT flag. The programmer
may use event routines, other mainline routines inspecting
MSGSTAT, or both. If the event routines are not used, it is
recommended to code them as a “RET” instruction.

SRcvdR:

Called by the service routine when a new, complete message has
been received into SRcvBuf. When SRevdR is called, R1 points to
the address of the last byte received into the buffer. In a typical
application SRcvdR will transfer the new data out of SRevBuf, so it
will not be written over by a subsequent slave reception.

The equivalent MSGSTAT indication for this eventis SRCVD (= 11h).

SLnRcvdR:

Called when a slave message has been received into SRcvBuf, but
the message was longer than the SRcvBuf buffer (as specified by
RbufLen).

The equivalent MSGSTAT indication for this event is SRLNG (= 12h).

1992 Jun 26

If the program is supposed to react to a too long a message the
same way as to a message that can be contained in the buffer, one
may code SLnRcvdR simply as a call to SRevdR.

STXedR:

Called by the service routine when data has been transmitted out of
the slave STxBuf buffer according to a master’s request. This
routine may insert new data into the buffer, preparing it for the next
slave transmission.

The equivalent MSGSTAT indication for this event is STXED (= 13h).

Note that we do not have a separate routine for the case that the
master requested too many bytes—more than STxBuf length—and
we sent out meaningless bytes. It is the master’s responsibility to
specify the message length, and it should be able to request
messages with the appropriate length from each slave on the bus.

SRErrR:

This routine relates more to bus communications than to the
application itself. It can be called when we positively detect a bus
error upon reception as a slave, in case the application is supposed
to know about it. In most cases this call will not be used, as dealing
with bus communications difficulties is usually left to the Master.

Just prior to calling SRErR, the code SRERR (= 14h) is placed in
MSGSTAT.

0Completion Routine:

I2CDONE

This routine is called every time, before returning from the 12c
interrupt service routine, whether the transaction was successful or
not. It can be used to “safely” monitor MSGSTAT without any risk of
a new interrupt modifying the current indication. Simple application
programs will not make use of this routine. A more sophisticated
application implementing a fail-safe communications protocol may
use it to count errors of a certain type in order to determine a
recovery scheme. In our programming example, I2CDONE inhibits
12C interrupts when it is evident that as a result of protocol errors
interrupts are not caused by legitimate Starts.

CONSTANTS

RBufLen—the length of SRcvBuf, the slave receive buffer. This
constant may be used both by the 12C routines and the application
program, and it is the responsibility of the application programmer to
define the correct buffer length.

MYNUM—This ROM constant is dependent on the application
environment. It is a small integer defining a “serial number” of the
node, out of all the processors running the same code. This
constant is used only when recovering from a timeout, in order to
“de-synchronize” masters from each other when trying to recover
the bus.

CTVALA1 is a constant defined in ROM. It is used by the application
code portion which initializes the I12C, for loading CTO and CT1 with
a value appropriate for the crystal being used.

MYADDR1 is a ROM constant containing the address of the
processor’s 12C node. This value is used by the application demo to
load the RAM location MyAddr.

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications

AN430

USING THE COMMUNICATIONS SUBROUTINES

In order to use the [2C Communications Routines an application

program should take care of the following:

- Upon initialization, load bits CT1, CTO of I2CFG register according
to the clock crystal used (refer to the table of CT1, CTO values in
the 8XC751 section of the Philips Semiconductors Microcontroller
Data Handbook (1C20)).

— Load MyAddr RAM location with the address of this node.

— For Slave operation, load STxBuf with the initial data to be
transmitted.

— For slave operation, set the SLAVEN bit in the I2CFG register.

— Enable 12C and watchdog interrupts by setting the ETI, EI2 and
EA bits of the interrupt enable register.

— For Master operation, set up the next transaction by loading the
appropriate directives into MASCMD, DESTADRW, DESSUBAD
(if applicable) and MASTCNT, and load MasBuf with the
appropriate data if it is a Write message.

~ For Master operation, initiate the next transaction by setting
MASTRQ bit in I2CFG.

— For both Master and Slave operation, handle data transmission
and reception via the buffers in main-line code or the Event
Routines.

1992 Jun 26

117

PROGRAMMING EXAMPLE

The assembler listing includes the 12C Communications Routines
and a demo application exercising these routines. In most real-life
applications the code of the routines could be used without
modifications. For those who follow the coding of the routines, one
should note that in many instances code speed and program space
have been slightly compromised in order to improve readability. The
almost “general purpose” interface to the routines affects efficiency
as well, and it is possible to write more compact and somewhat
faster code for specific applications. The reader is encouraged,
though, to use the code “as is” whenever possible.

The “application” demo is simple—two microcontrollers exchange
messages in a “ping-pong” game. In addition to trivial message
exchange, the code demonstrates recovery mechanisms from
communications errors and bus “hangups”. We tried this code with
two pairs of controllers exchanging messages on the same bus. The
message exchange could repeatedly recover and restart when the
SCL and SDA lines were temporarily shorted to ground or between
themselves. Simpler versions, without the “protection” mechanisms,
could “hang up” under such conditions.

Source Code Available On BBS

The source code file for this program is available for download
from the Philips computer bulletin board system. This system
is open to all callers, operates 24 hours a day, and can be
accessed with modems at 2400, 1200, and 300 baud. The
telephone numbers for the BBS are: (800) 451-6644 (in the U.S.
only) or (408) 991-2406.

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I2C applications AN430
PPCODEI1 83C751 Multimaster 12C Routines 4/14/1992 PAGE 1
1 H
2
3 ;
4 ; Multimaster Code for 83C751/83C752
5 ; 4/14/1992
6 ; *%
7 ; This code was written to accompany an application note. The I2C routines
8 ; are intended to be demonstrative and transportable into different
9 ; application scenarios, and were NOT optimized for speed and/or memory
10 ; utilization.
11 H
12 ; Yoram Arbel
13
14 $TITLE(83C751 Multi Master I2C Routines)
15 $DATE(4/14/1992)
16 $MOD751
17 $DEBUG
18
19 ;
20 ; 8XC751 MULTIMASTER 12C COMMUNICATIONS ROUTINES
21 5 Symbols and RAM definitions
22 ; kR kokkkk
23
24 ; Symbols (masks) for I2CFG bits.
25
0010 26 BTIR EQU 10h ; TIRUN bit.
0040 27 BMRQ EQU 40h ; MASTRQ bit.
28
29
30 ; Symbols (masks) for I22CON bits.
31
0080 32 BCXA EQU 80h ; CXA bit.
0040 33 BIDLE EQU 40h ; IDLE bit.
0020 34 BCDR EQU 20h ; CDR bit.
0010 35 BCARL EQU 10h ; CARL bit.
0008 36 BCSTR EQU 08h ; CSTR bit.
0004 37 BCSTP EQU 04h ; CSTP bit.
0002 38 BXSTR EQU 02h ; XSTR bit.
0001 39 BXSTP EQU 01h ; XSTP bit.
40
41 ; Note:
42 ;
43 ; Specific bits of the I2CON register are set by writing into this register a
44 ; combination of the masks defined above using the MOV command.
45 ; The SETB command should not be used with I2CON, as it is implemented by
46 ; reading the contents of the register, setting the appropriate bit and
47 ; writing it back into the register. As the functionality of the Read and
48 ; Write portions of the I2CON register is different, using SETB may cause
49 ; unwanted results.
50
51 ; Message transaction status indications in MSGSTAT:
52
0010 53 SGO EQU 10h ; Started Slave message processing.
1992 Jun 26 118

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster I2C applications AN430
PPCODE1 83C751 Multimaster 12C Routines 4/14/1992 PAGE 2
0011 54 SRCVD EQU 11h ; as a slave, received a new message
0012 55 SRLNG EQU 12h ; received as slave a message which is too

56 ; long for the buffer
0013 57 STXED EQU 13h ; as slave, completed message transmission.
0014 58 SRERR EQU 14h ; bus error detected when operating as a slave.
59
0020 60 MGO EQU 20h ; Started Master message processing.
0021 61 MRCVED EQU 21h ; As Master, received complete message from
62 ; slave.
0022 63 MTXED EQU 22h ; As Master, completed successful message
64 ; transmission (slave acknowledged all data
65 ; bytes).
0023 66 MTXNAK EQU 23h ; As Master, truncated message since slave did
67 ; not acknowledge a data byte.
0024 68 MTXNOSLV EQU 24h ; AS Master, did not receive an acknowledgement
69 ; for the specified slave address.
70
0030 71 TIMOUT EQU 30h ; TIMERI Timed out.
0032 72 NOTSTR EQU 32h ; Master did not recognize Start.
73
74 ; RAM locations used by I2C interrupt service routines.
75
76
0020 77 MASCMD DATA 20h
0000 78 SUBADD BIT MASCMD.0
0001 79 RPSTRT BIT MASCMD.1
0002 80 SETMRQ BIT MASCMD.2
81
0024 82 DSEG AT 24h
83
0024 84 MSGSTAT: DS 1 ; I2C communications status.
0025 -85 MYADDR: DS 1 ; Address of this 12C node.
0026 86 DESTADRW: DS 1 ; Destination address + R/W (for Master).
0027 87 DESSUBAD: DS 1 ; Destination subaddress.
0028 88 MASTCNT: DS 1 ; Number of data bytes in message (Master,
89 ; send or receive).
90
0029 91 TITOCNT: DS 1 ; Timer I bus watchdog timeouts counter.
002A 92 StackSave: DS 1 ; SP save location (used when returning from
93 ; bus recovery routine).
94
002B 95 MasBuf: DS 4 ; Master receive/transmit buffer, 8 bytes.
002F 96 SRcvBuf: DS 4 ; Slave receive buffer, 8 bytes.
0033 97 STxBuf: DS 4 ; Slave transmit buffer, 8 bytes.
98
99
100
0004 101 RBufLen EQU 4h ; The length of SRcvBuf
102

1992 Jun 26 119

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster I2C applications AN430
PPCODEI1 83C751 Multimaster 12C Routines 4/14/1992 PAGE 3
103 ;
104 H APPLICATION output pins and RAM definitions
105 3
106
107 ; Outputs used by the application:
108
0090 109 TogLED BIT P1.0 ; Toggling output pin, to confirm
110 ; that the ping—pong game proceeds fine.
0091 111 ErrLED BIT P1.1 ; Error indication.
112
0093 113 OnLED BIT P13 ;
114
115 ; Application RAM
116
0021 117 APPFLAGS DATA 21h
0008 118 TRQFLAG BIT APPFLAGS.0
119 ; Flag for monitoring I2C transmission success.
0009 120 SErrfFLAG BIT APPFLAGS.1
121
0037 122 FAILCNT: DS 1
123
0038 124 TOGCNT: DS 1 ; Toggle counter.
125
126
127 ;
128 ;
129 H Program Start
130 H
131 ; *
—_ 132 CSEG
133
134 ; Reset and interrupt vectors.
135
0000 4178 136 AJMP Reset ;Reset vector at address 0.
137
138
139 ; A timer I timeout usually indicates a "hung’ bus.
140 '
001B 141 ORG 1Bh ; Timer I (I2C timeout) interrupt.
001B D2DD 142 Timerl: SETB CLRTI
001D 4111 143 AIMP TIISR ; Go to Interrupt Service Routine.
144 ‘
145
146
147
148 ;
149 H 12C Interrupt Service Routine
150 B
151 ;
152 ; Notes on the interrupt mechanism:
153 H
154 ; Other interrupts are enabled during this ISR upon return from XRETI.
155 ; Limitations imposed on other ISR’s:

1992 Jun 26 120

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications AN430
PPCODE1 83C751 Multimaster 12C Routines 4/14/1992 PAGE 4
156 ; — Should not be long (close to 1000 clock cycles). A long ISR will cause
157 ;the I12C bus to ’hang”, and a TIMERI interrupt to occur.
158 ; — Other interrupts either do not use the same mechanism for allowing
159 ;further interrupts, or if they do — disable TIMERI interrupt beforehand.
160 ;
161 ; The 751 hardware allows only one level of interrupts. We simulate an
162 ; additional level by software: by performing a RETI instruction (at location
163 ; XRETI) the interrupt-in—progress flip—flop is cleared, and other interrupts
164 ;are enabled. The second level of interrupt is a must in our implementation,
165 ; enabling timeout interrupts to occur during “’stuck” wait loops in the 12C
166 ; interrupt service routine.
167
168
0023 169 ORG 23h
170
0023 C2AC 171 I2CISR: CLR EI2 ; Disable I2C interrupt.
0025 114C 172 ACALL XRETI ; Allow other interrupts to occur.
0027 CODO 173 PUSH PSW
0029 COEO 174 PUSH ACC
002B E8 175 MOV ARO
002C COEQ 176 PUSH ACC
002E E9 177 MOV ARI1
002F COEO 178 PUSH ACC
0031 EA 179 MOV AR2
0032 COEO 180 PUSH ACC
181
0034 85812A 182 MOV StackSave, SP
0037 C2DC 183 CLR TIRUN
0039 D2DC 184 SETB TIRUN
185
003B 209A09 186 JB STPNoGo
003E 30990C 187 INB MASTER, GoSlave
0041 752420 188 MOV MSGSTAT#MGO
0044 209B76 189 JB STR,GoMaster
0047 752432 190 NoGo: MOV MSGSTAT#NOTSTR
004A 21AE 191 AIMP Dismiss ; Not a valid Start.
192
004C 32 193 XRETL: RETI
194
195 H
196 H Main Transmit and Receive Routines
197 H
198
199 ; SLAVE CODE —
200 H GET THE ADDRESS
201
004D 752410 202 GoSlave: MOV MSGSTAT#SGO
0050 31E2 203 AddrRcv: ACALL ClIsRev8
0052 309D5E 204 JNB DRDY, SMsgEnd ; Must be some strange Start or Stop
205 ; before the address byte was completed.
206 ; Not a valid address.
0055 A2E0 207 STstRW: MOV C,ACC.0 ; Save R/W~ bit in carry.
0057 C2E0 208 CLR ACC.0 ; Clear that bit, leaving “"raw” address
1992 Jun 26 121

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I2C applications

AN430

PPCODE1 83C751 Multimaster I12C Routines

0059 6060 209 JZ Goldle ; If it is a General Address
210 ; — ignore it.
211
212 ; NOTE:
213 ; One may insert here a different
214 ; treatment for general calls, if
215 ; these are relevant.
216
005B 4027 217 JC SIvTx ; It’s a Read — (requesting slave
218 ; transmit).
219
220
221
222

4/14/1992 PAGE 5

223 ; It is a Write (slave should receive the message).

224
225 ; Check if message is for us
226

005D B5255B 227 SRcv2: CINE AMYADDR,Goldle ; If not my address — ignore the
228 ; message.

0060 792F 229 MOV R1,#SRcvBuf ; Set receive buffer address.

0062 7A05 230 MOV R2#RbufLen+1 ;
0064 8002 231 SIMP SRev3

232
0066 F7 233 SRcvSto: MOV @R1,A ; Store the byte
0067 09 234 Inc R1 ; Step address.
0068 31ED 235 SRcv3: ACALL AckRcv8

006A 309D09 236 JNB DRDY,SRcvEnd ; Exit loop —end reception.

006D DAF7 237 DINZ R2,SRcvSto ; Go to store byte if buffer not full.

238

239 ; Too many bytes received — do not acknowledge.
006F 752412 240 MOV MSGSTAT,#SRLNG ; Notify main that (as slave) we

241 ; have received too long a message.
0072 7110 242 ACALL SLnRCvdR ; Handle new data — slave event routine.

0074 8045 243 SIMP Goldle
244 !
245
246

247 ; Received a byte, but not DRDY - check if a legitimate message end.

248

0076 B8072E 249 SRcvEnd: CINE RO,#7,SRcvErr ; If bit count not 7, it was not

250 ; a Start or a Stop.

251

252 ; Received a complete message

253
254
0079 752411 255 MOV MSGSTAT#SRCVD

256 ; Calculate number of bytes received

007C E9 257 MOV ARI1
007D C3 258 CLR C

007E 942F 259 SUBB A#SRcvBuf ; number of bytes in ACC
0080 S1EF 260 ACALL SRCvdR ; Handle new data — slave event routine.

0082 802F 261 SIMP SMsgEnd

1992 Jun 26 122

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster 12C applications AN430
PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 6
262
263
264 ; It is a Read message, check if for us.
265
0084 00 266 SIvTx: NOP
267
0085 B52533 268 STx2: CINE AMYADDR,Goldle ; Not for us.
0088 759900 269 MOV I2DAT#0 ; Acknowledge the address.
008B 309EFD 270 JNB ATN.,$; Wait for attention flag.
008E 309D22 271 JNB DRDY,SMsgEnd ; Exception — unexpected Start
272 ; or Stop before the Ack got out.
0091 7933 273 MOV . R1#STxBuf ; Start address of transmit buffer.
0093 E7 274 STxIp: MOV A,@R1 ; Get byte from buffer
0094 09 275 INC R1
0095 31CE 276 ACALL XmByte
0097 309D19 277 JNB DRDY,SMsgEnd ; Byte Tx not completed.
009A 309FF6 278 JNB RDAT,STxIp ; Byte acknowledge, proceed trans.
009D 759860 279 MOV I2CON,#BCDR+BIDLE ; Master Nak’ed for msg end.
00AO0 752413 280 MoV MSGSTAT#STXED
00A3 7110 281 ACALL STXedR ; Slave transmitted event routine.
00AS 21AE 282 AJMP Dismiss
283
284
00A7 752414 285 SRcvErm: MoV MSGSTAT#SRERR ; Flag bus/protocol error
00AA 7110 286 ACALL SRErrR ; Slave error event routine.
00AC 8005 287 SIMP SMsgEnd
00AE 752414 288 StxErr: MOV MSGSTAT#SRERR ; Flag bus/protocol error
00B1 7110 289 ACALL SREnR
) 290
00B3 209903 291 SMsgEnd: JB MASTER,SMsgEnd2
00B6 209B94 292 JB STR,GoSlave ; If it was a Start, be Slave
00B9 293 SMsgEnd2:
00B9 21AE 294 AIMP Dismiss
295
296
297 ; End of Slave message processing
298
00BB 299 Goldle:
00BB 21AE 300 AJMP Dismiss
301
302
303
304
305 ;
306 ;
307
00BD 308 GoMaster:
309
310
311 ; Send address & R/W~ byte
312
00BD 792B 313 MoV R1,#MasBuf ; Master buffer address
OOBF AA28 314 MOV R2,MASTCNT ; # of bytes, to send or rcv
1992 Jun 26 123

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster 12C applications AN430
PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 7
00C1 E526 315 MOV A DESTADRW ; Destination address (including

316 ; RF'W~ byte).
00C3 200012 317 JB SUBADD,GoMas2 ; Branch if subaddress is needed.
318
00C6 31C5 319 ACALL XmAddr
320
00C8 309D03 321 JNB DRDY,GM2
00CB 309C02 322 JNB ARL,GM3
00CE 2186 323 GM2: AJMP AdTxArl ; Arbitration loss while transmitting
324 ; the address.
00D0 209F5C 325 GM3: JB RDAT,Noslave ; No Ack for address transmission.
00D3 20E063 326 JB ACC.0, MRcv ; Check R/W~ bit
00D6 211A 327 AJMP MTx
328
329 ; Handling subaddress case:
330
00D8 00 331 GoMas2: NOP ; Subaddress needed. Address in ACC.
00D9 C2EO0 332 CLR ACC.0 ; Force a Write bit with address.
00DB 31C5 333 ACALL XmAddr
00DD 309D03 334 JNB DRDY,GM4
00EO 309C02 335 JNB ARL,GMS5
00E3 2186 336 GM4: AJMP AdTxArl ; Arbitration loss while transmitting
337 ; the address.
338
00ES5 209F47 339 GMS5: JB RDAT,Noslave ; No Ack for address transmission.
00ES8 E527 340 MOV A,DESSUBAD
00EA 31CE 341 ACALL XmByte ; Transmit subaddress.
00EC 309DCA 342 JNB DRDY,SMsgEnd2 ; Arbitration loss (by Start or Stop)
00EF 209CC7 343 JB ARL,SMsgEnd2 ; Arbitration loss occurred.
00F2 209F3F 344 B RDAT,NoAck ; Subaddress transmission was not ack’ed.
00F5 E526 345 MOV A,DESTADRW ; Reload ACC with address.
00F7 30E020 346 JNB ACC.0, MTx ; It’s a Write, so proceed
347 ; by sending the data.
348 ; Read message, needs rp. Start and add. retransmit.
349
00FA 759822 350 MOV 12CON #BCDR+BXSTR ; Send Repeated Start.
00FD 309EFD 351 JNB ATN,$
0100 759820 352 MOV I12CON#BCDR ; Clear useless DRDY while preparing
353 ; for Repeated Start.
0103 309EFD 354 IJNB ATN,$; expecting an STR.
0106 309C02 355 JNB ARL,GM6
0109 2182 356 AJMP MArlEnd ; oops — lost arbitration.
010B 31C5 357 GMé6: ACALL XmAddr ; Retransmit address, this time with the
358 ; Read bit set.
010D 309D03 359 IJNB DRDY,GM7
0110 309C02 360 JNB ARL,GM8
0113 2186 361 GMT: AJMP AdTxArl ; Arbitration loss while transmitting
362 ; the address.
0115 209F17 363 GMS: JB RDAT,Noslave ; No Ack — the slave disappeared.
0118 801F 364 SIMP MRcv ; Proceed receiving slave’s data.
365
366 ; A Write message. Master transmits the data.
367

1992 Jun 26 124

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster 12C applications - AN430
PPCODEI1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 8
011A 00 368 MTx: NOP

369
011B E7 370 MTxLoop: MOV A,@R1 ; Get byte from buffer.
011C 09 371 INC R1 ; Step the address.
011D 31CE 372 ACALL XmByte
011F 309D97 373 JNB DRDY,SMsgEnd2 ; Arbitration loss (by Start or Stop)
0122 209C9%4 374 JB ARL,SMsgEnd2 ; Arbitration loss.
0125 209F0C 375 JB RDAT,NoAck
0128 DAF1 376 DINZ R2,MTxLoop ; Loop if more bytes to send.
377
012A 752422 378 MOV MSGSTAT#MTXED ; Report completion of buffer
379 ; transmission.
012D 8025 380 SIMP MTxStop
012F 752424 381 NoSlave: MOV MSGSTAT#MTXNOSLV
0132 8020 382 SIMP MTxStop
0134 752423 383 NoAck: MOV MSGSTAT#MTXNAK
0137 801B 384 SIMP MTxStop
385
386
387
388 ; Master receive — a Read frame
389
0139 31F6 390 MRcv: ACALL ClaRcv8 ; Receive a byte.
013B 8002 391 SIMP MRcv2
013D 31ED 392 MRcevLoop: ACALL AckRcv8
013F 309D39 393 MRcv2: INB DRDY,MArl ; Other’s Start or Stop.
0142 F7 394 MOV @R1,A ; Store received byte.
0143 09 395 INC R1 ; Advance address.
0144 DAF7 396 DINZ R2,MRcvLoop
397
398 ; Received the desired number of bytes — send Nack.
399
0146 759980 400 MOV I2DAT#80h
0149 309EFD 401 JNB ATN,$
014C 309D2C 402 JNB DRDY,MArl
014F 752421 403 MOV MSGSTAT,#MRCVED
0152 8000 404 SIMP MTxStop ; Go to send Stop or Repeated Start.
405
406
407
408 ; Conclude this Master message:
409 ; Send Stop, or a Repeated Start
410
411
0154 300105 412 MTxStop: JNB RPSTRT,MTxStop2 ; Check if Repeated Start needed
413 ; Around if not RPSTRT.
0157 759822 414 MOV I2CON #BCDR+BXSTR ; Send Repeated Start.
015A 8007 415 SIMP MTxStop3
015C A202 416 MTxStop2: MOV C,SETMRQ ; Set new Master Request if demanded
015E 92DE 417 MOV MASTRQ,C ; by SETMRQ bit of MASCMD.
418
0160 759821 419 MOV I2CON,#BCDR+BXSTP ; Request the HW to send a Stop.
420

1992 Jun 26 125

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I12C applications AN430

PPCODE1

0163 309EFD
0166 759820

0169 309EFD
016C 209C13

016F 7112

0171 30DEOS

0174 309B02

0177 01BD

0179
0179 8033

017B

017B 309B02

017E 014D

0180
0180 21AE

0182
0182 D2DE

1992 Jun 26

83C751 Multimaster 12C Routines

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

MTxStop3: INB ATN,$
MOV I12CON,#BCDR
INB ATN,$

JB ARL MarlEnd

; Master is done with this message.
; or exit.

4/14/1992 PAGE 9

; Wait for Attention

; Clear the useless DRDY, generated
; by SCL going high in preparation

; for thr Stop or Repeated Start.

; Wait for ARL, STP or STR.

; Lost arbitration trying to send

; Stop or a ReStart.

May proceed with new messages, if any,

ACALL MastNext ; Master Event Routine. May Prepare
; the pointers and data for the
; next Master message.
JNB MASTRQ,MMsgEnd ; Go end service routine if MASTRQ
; does not indicate that the master
; should continue (was set according
; to SETMRQ bit, or by MastNext).
JNB STR,MMsgEnd ; Return from the ISR, unless Start
; (avoid danger if we do not return:
; if there was a Stop, the watchdog
; is inactive until next Start).
AJMP GoMaster ; Loop for another Master message
MMsgEnd: ; End of Master messages,
SIMP Dismiss

; Terminate mastership due to an arbitration loss:

MArl:

JNB STR,MArI2
AJMP GoSlave
Marl2:

AJMP Dismiss

; If lost arbitration due to other
; Master’s Start, go be a slave.

; Switch from Master to Slave due to arbitration loss after completing
; transmission of a message. The MASTRQ bit was cleared trying to write a
; Stop, and we need to set it again on order to retry transmission when the

; bus gets free again.

MATrlEnd:
SETB MASTRQ

; Set Master Request — which will get
; into effect when we are done as a
; slave.

126

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster I2C applications AN430
PPCODE1 83C751 Multimaster I12C Routines 4/14/1992 PAGE 10
0184 217B 475 AIMP MAurl

476
477 ; Handling arbitration loss while transmitting an address
478
0186 209BF2 479 AdTxATrl: JB STR,MArl ; Non-synchronous Start or Stop.
0189 209AEF 480 JB STPMArl
481
482 ; Switch from Master to Slave due to arbitration loss while transmitting
483 ; an address — complete receiving the address transmitted by the new Master.
484
018C B80003 485 CINE RO,#0,AdTxArl2
486 ; Arl on last bit of address
487 ; (RO is O on exit from XmAddr).
O18F 14 488 DEC A ; The Isb sent, in which arl occured
489 ; must have been 1. By decrementing
490 ; A we get the address that won.
0190 8012 491 SIMP AdAr3
492
0192 493 AdTxArl2:
0192 03 494 RR A ; Realign partially Tx’ed ACC
0193 F9 495 MoV RLA ; and save it in R1
0194 E8 496 MOV ARO ; Pointer for lookup table
0195 9001A6 497 MOV DPTR #MaskTable
0198 93 498 MOVC A,@A+DPTR
0199 59 499 ANL ARI1 ; Set address bits to be received,
500 ; and the bit on which we lost
501 ; arbitration to 0
502 ; Now we are ready to receive the rest
503 ; of the address.
504
505
019A 759890 506 MOV I2CON,#BCXA+BCARL ; Clear flags and release the clock.
507
019D 5108 508 ACALL RBit3 ; Complete the address using reception
509 ; subroutine.
019F 209D02 510 JB DRDY,AdAr3 ; Around if received address OK
01A2 01B3 511 AIMP SMsgEnd ; Unexpected Start or Stop — end
512 ; as a slave.
01A4 0155 513 AdAr3: AJMP STstRW ; Proceed to check the address
514 ; as a slave.
515
01A6 FF7E3EIE 516 MaskTable: DB 0Offh,7Eh,3Eh,1Eh,0Eh,06h,02h,00h, ; Offh is dummy
01AA 0E060200
517
518 ; End I2C Interrupt Service Routine:
519
O1AE 711E 520 Dismiss: ACALL 12CDONE
521
01BO0 7598F4 522 MOV 12CON #BCARL+BCSTP+BCDR+BCXA+BIDLE
01B3 C2DC 523 CLR TIRUN
01BS DOEO 524 POP ACC
01B7 FA 525 MOV R2,A
01B8 DOEO 526 POP ACC

1992 Jun 26 127

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster 12C applications AN430
PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 11
01BA F9 527 MOV RLA
01BB DOEO 528 POP ACC
01BD F8 529 MOV RO,A
01BE DOEO 530 POP ACC
01C0 DODO 531 POP PSW
01C2 D2AC 532 SETB EI2

533
01C4 22 534 RET ; Return from I2C interrupt Service Routine

535

536 ;

537 ; Byte Transmit and Receive Subroutines

538 ;

539

540

541

542 H XmAddr: Transmit Address and R/W~

543 H XmByte: Transmit a byte

544
01C5 F599 545 XmAddr: MOV I12DATA ; Send first bit, clears DRDY.
01C7 75981C 546 MOV I2CON,#BCARL+BCSTR+BCSTP

547 ; Clear status, release SCL.
01CA 7808 548 MOV RO,#8 ; Set RO as bit counter
01CC 8004 549 SIMP XmBit2
01CE 7808 550 XmByte: MOV RO#8
01D0 F599 551 XmBit: MOV I2DAT,A ; Send the first bit.
01D2 23 552 XmBit2: RL A ; Get next bit.
01D3 309EFD 553 INB ATN,$; Wait for bit sent.
01D6 309D08 554 JNB DRDY,XmBex ; Should be data ready.
01D9 D8F5 555 DINZ RO, XmBit ; Repeat until all bits sent.
01DB 7598A0 556 MOV I2CON,#BCDR+BCXA ; Switch to receive mode.
01DE 309EFD 557 JNB ATN,$; Wait for acknowledge bit.

558 ; flag cleared.
01E1 22 559 XmBex: RET

560

561 H

562 ; Byte receive routines.

563 H

564 ; CIsRcv8 clears the status register (from Start condition)

565 ; and then receives a byte.

566 ; AckRcv8 Sends an acknowledge, and then receives a new byte.

567 H If a Start or Stop is encountered immediately after the

568 ; ack, AckRcv8 returns with 7 in RO.

569 ; ClaRcv8 clears the transmit active state and releases clock

570 H (from the acknowledge).

571 ;

572 H A contains the received byte upon return.

573 H RO is being used as a bit counter.

574 H

575
01E2 75989C 576 ClIsRcv8: MOV I2CON #BCARL+BCSTR+BCSTP+BCXA

577 ;Clear status register.
01E5 309EFD 578 JNB ATN,$
01ES8 309D22 579 JNB DRDY,RCVex

1992 Jun 26 128

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications AN430
PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 12
01EB 800F 580 SIMP Rev8

581
01ED 759900 582 AckRcv8: MOV 12DAT#0 ; Send Ack (low)
01F0 309EFD 583 INB ATN,$
01F3 309D18 584 JNB DRDY,RCVerr ; Bus exception — exit.
01F6 7598A0 585 ClaRcv8: MOV 12CON #BCDR+BCXA ; clear status, release clock
586 sfrom writing the Ack.
01F9 309EFD 587 JNB ATN,$
588
01FC 7807 589 Rcev8: MOV RO#7 ; Set bit counter for the first seven
590 ; bits.
O1FE E4 591 CLR A ; Init received byte to 0.
O1FF 4599 592 RBit: ORL AJ2DAT ; Get bit, clear ATN.
0201 23 593 RBit2: RL A ; Shift data.
0202 309EFD 594 JNB ATN,$; Wait for next bit.
0205 309D05 595 JNB DRDY,RCVex ; Exit if not a data bit (could be Start/
596 ; Stop, or bus/protocol error)
0208 D8FS 597 RBit3: DINZ RO,RBit - ; Repeat until 7 bits are in.
020A A29F 598 MOV C.RDAT ; Get last bit, don’t clear ATN.
020C 33 599 RLC A ; Form full data byte.
020D 22 600 RCVex: RET
601
020E 7809 602 RCVerr: MOV RO#9 ; Return non legitimate bit count
0210 22 603 RET
604
605
606 ; PR
607 H Timer I Interrupt Service Routine
608 H 12C us Timeout
609 ; sokokokok
610
611 ; In addition to reporting the timeout in MSGSTAT, we update a failure
612 ; counter, TITOCNT. This allows different types of timeout handling by the
613 ; main program.
614
0211 C2DE 615 TIISR: CLR MASTRQ ; "Manual” reset.
0213 759801 616 MOV I2CON,#BXSTP)
0216 7598BC 617 MOV 12CON #BCXA+BCDR+BCARL+BCSTR+BCSTP
618
0219 752430 619 TIL: MOV MSGSTAT#TIMOUT ; Status Flag for Main.
021C 74FF 620 TI2: MOV A #0FFh
021E B52902 621 CINE A,TITOCNT,TI3 ; Increment TITOCNT, saturating
0221 8002 622 SIMP TI4 ; at FFh.
0223 0529 623 TI3: INC TITOCNT
624
0225 5130 625 TI4: ACALL RECOVER
626
0227 D2DD 627 SETB CLRTI ; Clear TI interrupt flag.
0229 114C 628 ACALL XRETI ; Clear interrupt pending flag (in
629 ; order to re—enable interrupts).
022B 852A81 630 MOV SP,StackSave ; Realign stack pointer, re-doing
631 ; possible stack changes during
632 ; the I2C interrupt service routine.

1992 Jun 26

129

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I12C applications AN430
PPCODEI1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 13
633 ; Timerl interrupts in other ISR’s
634 ; were not allowed !
022E 21AE 635 AIMP Dismiss ; Go back to the 12C service routine,
636 ; in order to return to the (main)
637 ; program interrupted.
638
639
640 ;
641 H Bus recovery attempt subroutine
- 642 ; ok
643
0230 C2AF 644 RECOVER: CLR EA
0232 C2DE 645 CLR MASTRQ ; "Manual” reset.
0234 7598FC 646 MOV 12CON,#BCXA+BIDLE+BCDR+BCARL+BCSTR+BCSTP
0237 C2DF 647 CLR SLAVEN ; Non I2C Timerl mode
0239 D2DC 648 SETB TIRUN ; Fire up Timerl. When it overflows, it
649 ; will cause I2C interface hardware reset.
023B 79FF 650 MOV R1,#0ffh
023D 00 651 DLYS: NOP
023E 00 652 NOP
023F 00 653 NOP
0240 D9FB 654 DINZ R1,DLY5
0242 C2DC 655 CLR TIRUN
0244 D2DD 656 SETB CLRTI
657
0246 D280 658 SETB SCL ; Issue clocks to help release other devices.
0248 D281 659 SETB SDA
024A 7908 660 MOV R1,#08h
024C C280 661 RC7: CLR SCL
024E 00000000 662 DB 0,0,0,0,0
0252 00
0253 D280 663 SETB SCL
0255 00000000 = 664 DB 0,0,0,0,0
0259 00
025A D9FO 665 DINZ R1,RC7
025C C280 666 CLR SCL
025E 0000 667 DB 0,0
0260 C281 668 CLR SDA
0262 0000 669 DB 0,0
0264 D280 670 SETB SCL
0266 00000000 671 DB 0,0,0,0,0
026A 00
026B D281 672 SETB SDA
026D 00000000 673 DB 0,0,0,0,0 ; Issue a Stop.
0271 00
674
0272 7598BC 675 Rex: MOV 12CON#BCXA+BCDR+BCARL+BCSTR+BCSTP ; clear flags
0275 D2AF 676 SETB EA
0277 22 677 RET
678
1992 Jun 26 130

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications AN430
PPCODE1 83C751 Multimaster 12C Routines 4/14/1992 PAGE 14
679 y** %% gk kk B
680 H
681 H Main Program
682 ;
683 Rk sk sk okok sk ok
684
685 ; Message ping pong game. Each message is transmitted by
686 ; a processor that is a master on the I2C bus, and it contains one byte
687 ; of data. A processor that receives this data byte as a slave increments
688 ; the data by one and transmits it back as a master. The data received is
689 ; confirmed to be a one increment of the data formerly sent, unless
690 ; it is a “reset” value, chosen to be 00h.
691 ; The two participating processors have similar code, where the node
692 ; address of the second processor is the destination address of this
693 ; one, and vice versa.
694 ; The first data byte each processor tries to send is 00h. One of the
695 ; processors will acquire the bus first, and the second processor that will
696 ; receive this “resetting” 00h will not attempt to confirm it against an
697 ; expected value. It will simply increment and transmit it. Subsequent
698 ; receptions will be confirmed against the expected value, until Offh data
699 ; bytes are sent and the game is effectively reset by the 00h resulting from
700 ; the next increment.
701 ; A toggling output (TogLED) tells the outer world that the “ping pong”
702 ; proceeds well. If something unexpected happens we temporarily activate
703 ; another output, ErrLED.
704 ; The different tasks of the code are performed in a combination of main—
705 ; line program and event routines called from the 12C interrupt service
706 ; routine.
707
708
709 ; Initial set—ups:
710 ; Load CT1,CTO bits of I2CFG register, according to the clock
711 ; crystal used.
712 ; Load RAM location MYADDR with the 12C address of this processor.
713 ; We load these values out of ROM table locations (R_CTVAL and R_MYADDR).
714 ; One may, instead, load with a MOV <immediate> command.
715
0278 758107 716 Reset: MOV SP#07h ;Set stack location.
027B E4 717 CLR A
027C 90032D 718 MOV DPTR#R_CTVAL
027F 93 719 MOVC A,@A+DPTR
0280 F5D8 720 MOV 12CFG,A ; Load CT1,CTO (I12C timing, crystal
721 ; dependent).
0282 E4 722 CLR A
0283 90032C 723 MOV DPTR #R_MYADDR
0286 93 724 MoOvC A,@A+DPTR ; Get this node’s address from ROM table
0287 F525 725 MOV MYADDR,A ; into MYADDR RAM location.
726
0289 C293 727 CLR OnLED
728
729
028B C291 730 Reset2: CLR ErrLED ; Flash LED.
028D 51E6 731 ACALL LDELAY
1992 Jun 26 131

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I12C applications AN430
PPCODE1 83C751 Multimaster 12C Routines 4/14/1992 PAGE 15
028F D291 732 SETB ErrLED
0291 C209 733 CLR SErrFLAG
0293 C208 734 CLR TRQFLAG
0295 753750 735 MOV FAILCNT#50h
0298 D290 736 SETB TogLED
029A 753850 737 MOV TOGCNT,#050h ; Initialize pin-toggling counter

738
739 ; Enable slave operation.
740 ; The Idle bit is set here for a restart situation — in normal
741 ; operation this is redundant, as this bit is set upon power_up reset.
029D 759840 742 MOV I12CON,#BIDLE ; Slave will idle till next Start.
02A0 D2DF 743 SETB SLAVEN ; Enable slave operation.
744
745 ; Enable interrupts.
746 ; This is necessary for both Slave and Master operations.
02A2 D2AB 747 SETB ETI ; Enable timer I interrupts.
02A4 D2AC 748 SETB EI2 ; Enable I2C port interrupts.
02A6 D2AF 749 SETB EA ; Enable global interrupts.
750
751 ; Set up Master operation.
752
02A8 752000 753 MOV MASCMD,#0h ; "Regular” master transmissions.
02AB 90032E 754 MOV DPTR,#PongADDR
02AE E4 755 CLR A
02AF 93 756 MOVC A,@A+DPTR
02B0 F526 757 MOV DESTADRW,A ; The partner address. The LSB is
758 ; low, for a Write transaction.
02B2 752801 759 MOV MASTCNT#01h ; Message length — a single byte.
760
02B5 761 PPSTART:
02B5 752B00 762 MOV MasBuf,#00h
763
764 ; ”Ping” transmission:
765
02B8 766 PP2:
02B8 D208 767 SETB TRQFLAG
02BA D2DE 768 SETB MASTRQ
02BC 79FF 769 MOV R1,#0ffh
02BE 300809 770 PP22: IJNB TRQFLAG,PP3 ; Transmitted OK
02C1 D9FB 771 DINZ R1,PP22
02C3 DS37F2 772 MFAIL1: DINZ FAILCNT,PP2
02C6 5130 773 ACALL RECOVER
02C8 80C1 774 SIMP Reset2
775
776 ; ”Pong” reception:
777
02CA 78FF 778 PP3: MOV RO,#0ffh ; Software timeout loop count.
02CC 79FF 779 PP31: MOV R1,#0ffh
02CE 2008E7 780 PP32: JB TRQFLAG,PP2 ; Rcvd ok as slave, go transmit.
02D1 200908 781 JB SErrFLAG,PP5
02D4 D9F8 782 DINZ R1,PP32
02D6 D8F4 783 DINZ RO,PP31
02D8 5130 784 PPTO: ACALL RECOVER ; Software timeout.
1992 Jun 26 132

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications AN430
PPCODE!1 83C751 Multimaster 12C Routines 4/14/1992 PAGE 16
02DA 418B 785 AJMP Reset2

786
02DC C291 787 PP5: CLR ErrLED ; Receive error.
02DE 51E6 788 ACALL LDELAY
02E0 D291 789 SETB ErrlLED
02E2 C209 790 CLR SErrFLAG
02E4 41B5 791 AJMP PPSTART
792
02E6 7A30 793 LDELAY: MOV R2,#030h
02E8 79FF 794 LDELAY1: MOV R1,#0ffh
02EA D9FE 795 DINZ R1$
02EC DAFA 796 DINZ R2,LDELAY1
02EE 22 797 RET
798
799 H Frdk
800 H Slave and Master Event Routines.
801 ; ko
802
803 ;
804 ;Invoked upon completion of a message transaction.
805 ;This is the part of the application program actually dealing
806 ;with the data communicated on the I2C bus, by responding to
807 ;new data received and/or preparing the next transaction.
808
809
810 ; Slave Event Routines
811 H
812 ; These routines are invoked by the I2C interrupt service routine when a
813 ; message transaction as a slave has been completed. Our “application”
814 ; reacts to a message received as a slave with the routine SRCvdR.
815 ; The calls that indicate erroneous reception are treated the same way as
816 ; erroneous data reception in the ping pong” game.
817
818 ;SRevdR
819 ;Invoked when a new message has been received as a Slave.
820
02EF 00 821 SRcvdR: NOP
02F0 E52F 822 MOV A,SRcvBuf
02F2 7005 823 INZ SR2
02F4 752B01 824 MOV MasBuf#01h ; It was ping—pong reset value
02F7 800F 825 SIMP SR3
826
02F9 052B 827 SR2: INC MasBuf ; The expected data.
02FB B52BOF 828 CINE A MasBuf ErrSR
02FE 052B 829 INC MasBuf ; Data for next transmission — the data
830 ; received incremented by 1.
831
832 ;A successful two way data exchange. Let the outside world know by
833 stoggling an output pin driving a LED. We actually toggle only
834 ;when a number of such exchanges is completed, in order to
835 ;slow down the changes for a good visual indication.
836

1992 Jun 26 133

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster I2C applications AN430
PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 17
0300 D53805 837 DINZ TOGCNT,SR3
0303 B290 838 CPL TogLED ; Toggle output
0305 753850 839 MOV TOGCNT,#050h ;

840
0308 C209 841 SR3: CLR SEnFLAG
030A D208 842 SETB TRQFLAG ; Request main to transmit
030C 22 843 RET
844
030D D209 845 ErrSR: SETB SErFLAG
030F 22 846 RET
847
848
849 ;SLnRcvdR
850 ;Invoked when a message received as a Slave is too long
851 ;for the receive buffer.
852
853 ;STXedR
854 ;Invoked when a Slave completed transmission of its buffer.
855 ;We do not expect to get here, since we do not plan to have
856 ;in our system a master that will request data from this node.
857 H
858
859 ;SREmR
860 ;Slave error event subroutine.
861 ;In most applications it will not be used.
862 H
863
0310 864 SLnRcvdR:
0310 865 STXedR:
0310 80FB 866 SRErmR: IMP ErrSR
867
868
869 H
870 ;MastNext — Master Event Routine.
871 H
872 ;Invoked when a Master transaction is completed, or terminated
873 ;”willingly” due to lack of acknowledge by a slave.
874 ;
875
0312 876 MastNext:
0312 E524 877 MOV AMSGSTAT
0314 B42206 878 CINE AH#MTXED,MNI1
0317 753750 879 MOV FAILCNT,#50h
031A C208 880 CLR TRQFLAG
031C 22 881 RET
031D 882 MNI1:
031D 22 883 RET
884
885 ;2CDONE
886 ;Called upon completion of the I2C interrupt service routine.
887 ;In this example it monitors exceptions, and invokes the bus
888 ;recovery routine when too many occurred.
889
1992 Jun 26 134

Philips Semiconductors

Application note

Using the 8XC751/752 in multimaster 12C applications AN430
PPCODEL1 83C751 Multimaster 12C Routines 4/14/1992 PAGE 18
031E 890 I12CDONE:
031E E524 891 MOV A MSGSTAT
0320 B43208 892 CINE A#NOTSTR,12CD1
0323 D53705 893 DINZ FAILCNT,I2CD1
0326 753701 894 MOV FAILCNT#01h ; Too many “illegal” i2c interrupts
0329 C2AC 895 CLR EI2 ; — shut off.
032B 22 896 12CD1: RET

897
898
899 ; Hokokok ook
900 ; 12C Communications Table:
901 ;
902
903
904
905 ; We used table driven values for clarity. one may use immediate to load
906 ; these values and save several lines of code.
907
908 ; Contents is used in the beginning of the main program to load
909 ; RAM location MYADDR and the I2CFG register.
910 ; The node address, in R_MYADDR, is application specific, and unique for
911 ; each device in the I2C network.
912 ; R_CTVAL depends on the crystal clock frequency.
913
032C 4E 914 R_MYADDR: DB 4Eh ; This node’s address
915
032D 02 916 R_CTVAL: DB 02h ; CT1, CTO bit values
917
918 ; Hhdk ko d
919 H Application Code Definitions
920 ;
921
032E 4A 922 PongADDR: DB 4Ah ; The address of the "partner” in
923 ; the ping—pong game.
924
925
926
927
928 END
929

VERSION 1.2h ASSEMBLY COMPLETE, 0 ERRORS FOUND

1992 Jun 26

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster 12C applications AN430
PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 19
ACCo D ADDR 00EOH PREDEFINED
ACKRCVS ...t C ADDR 01EDH
ADAR3l CADDR 01A4H
ADDRRCV C ADDR 0050H NOT USED
ADTXARL. C ADDR 0186H
ADTXARL2................. C ADDR 0192H
APPFLAGS D ADDR 0021H
ARLl B ADDR (009CH PREDEFINED
ATN ... oo B ADDR 009EH PREDEFINED
BCARLoool. NUMB 0010H
BCDR...........oooviiiaa.. NUMB 0020H
BCSTPt NUMB 0004H
BCSTRcoiviiiiin NUMB 0008H
BCXA ... NUMB 0080H
BIDLEt NUMB 0040H
BMRQcooiiiiii NUMB 0040H NOT USED
BTIRccoiiiniinn, NUMB 0010H NOT USED
BXSTP ...l NUMB 0001H
BXSTR ...t NUMB 0002H
CLARCVSooviintn C ADDR 01F6H
CLRTIcoooiiiiiat, B ADDR O00DDH PREDEFINED
CLSRCV8.t C ADDR 01E2H
DESSUBAD D ADDR 0027H
DESTADRW D ADDR 0026H
DISMISS.coinnnn. CADDR 01AEH
DLYS ... i C ADDR 023DH
DRDY B ADDR 009DH PREDEFINED
EA. ... B ADDR (00AFH PREDEFINED
EI2. B ADDR 00ACH PREDEFINED
ERRLED. B ADDR 0091H
ERRSR C ADDR 030DH
ETL B ADDR 00ABH PREDEFINED
FAILCNT., D ADDR 0037H
GM2. ... C ADDR 00CEH
GM3. ... C ADDR (00DOH
GM4. ... C ADDR 00E3H
GMS. ... C ADDR 00ESH
GM6. ... C ADDR 010BH
GM7. ... CADDR 0113H
GMS8. ... CADDR 0115H
GOIDLE. CADDR 00BBH
GOMAS2. ..., C ADDR 00D8H
GOMASTER C ADDR 00BDH
GOSLAVE. C ADDR 004DH
I2CD1 ... C ADDR 032BH
I2CDONE. C ADDR 031EH

1992 Jun 26 136

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster I2C applications AN430
PPCODE!1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 20
I2CFG ... D ADDR (00D8H PREDEFINED
I2CISR i C ADDR 0023H NOT USED
I2CON, D ADDR (0098H PREDEFINED
I2DAToviiiin... D ADDR 0099H PREDEFINED
LDELAY C ADDR 02E6H
LDELAYL.coouen. C ADDR (02E8H
MARL C ADDR 017BH
MARL2 C ADDR 0180H
MARLEND. C ADDR 0182H
MASBUF. D ADDR 002BH
MASCMD. D ADDR 0020H
MASKTABLE. C ADDR 0l1A6H
MASTCNT. D ADDR 0028H
MASTER. B ADDR 0099H PREDEFINED
MASTNEXT C ADDR 0312H
MASTRQ. B ADDR (0ODEH PREDEFINED
MFAILL. C ADDR 02C3H NOT USED
MGOccovviviinnn. NUMB 0020H
MMSGEND. C ADDR 0179H
MNIL. ..o C ADDR 031DH
MRCV C ADDR 0139H
MRCV2covvenn. C ADDR 013FH
MRCVED.................... NUMB 0021H
MRCVLOOP C ADDR 013DH
MSGSTAT.coovnn. D ADDR 0024H
MTX. . CADDR 011AH
MTXEDccoiiinn.. NUMB 0022H
MTXLOOP.ccvvnnn. C ADDR 011BH
MTXNAK NUMB 0023H
MTXNOSLV NUMB 0024H
MTXSTOP................... C ADDR 0154H
MTXSTOP2 C ADDR 015CH
MTXSTOP3 C ADDR 0163H
MYADDR. D ADDR 0025H
NOACKcovviiiaennn. C ADDR 0134H
NOGO C ADDR 0047H
NOSLAVE. C ADDR 012FH
NOTSTRccovvnevnn.. NUMB 0032H
ONLEDcovvnnnnn B ADDR 0093H
Pl. D ADDR 0090H PREDEFINED
PONGADDR C ADDR 032EH
PP2. ... C ADDR 02B8H
PP22 ... C ADDR 02BEH
PP3. C ADDR 02CAH
PP31 C ADDR 02CCH
PP32 C ADDR 02CEH

1992 Jun 26 137

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster I2C applications AN430
PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 21
PP5. C ADDR 02DCH
PPSTART. C ADDR 02BSH
PPTOccoviiiivin, C ADDR 02D8H NOT USED
PSW. D ADDR 00DOH PREDEFINED
RBITccia... CADDR O0IFFH
RBIT2 CADDR 0201H NOT USED
RBIT3 C ADDR 0208H
RBUFLEN NUMB 0004H
RC7T . C ADDR 024CH
RCV8 C ADDR 0IFCH
RCVERR. C ADDR 020EH
RCVEX C ADDR 020DH
RDAT B ADDR 009FH PREDEFINED
RECOVER. C ADDR 0230H
RESETointt. C ADDR 0278H
RESET2.c.coovvinnnn. C ADDR 028BH
REX. it CADDR 0272H NOT USED
RPSTRT.oounn.. B ADDR 0001H
RCTVAL. C ADDR 032DH
R_MYADDR C ADDR 032CH
SCL. .. B ADDR 0080H PREDEFINED
SDA. ... B ADDR 0081H PREDEFINED
SERRFLAG B ADDR 0009H
SETMRQ. B ADDR 0002H
SGO ... NUMB 0010H
SLAVEN. B ADDR 00DFH PREDEFINED
SLNRCVDR C ADDR 0310H
SLVTX ... C ADDR 0084H
SMSGEND. C ADDR 00B3H
SMSGEND2................. C ADDR 00B9H
SP. D ADDR 0081H PREDEFINED
SR2. .. C ADDR 02F9H
SR3. ... C ADDR 0308H
SRCV2 ... C ADDR (005DH NOT USED
SRCV3 ... C ADDR 0068H
SRCVBUFE. D ADDR 002FH
SRCVD ..., NUMB 0011H
SRCVDR. C ADDR 02EFH
SRCVEND. C ADDR 0076H
SRCVERR. C ADDR 00A7H
SRCVSTO. C ADDR 0066H
SRERR NUMB 0014H
SRERRR. CADDR 0310H
SRLNGcovvi... NUMB 0012H
STACKSAVE D ADDR 002AH
STP. B ADDR 009AH PREDEFINED

1992 Jun 26 138

Philips Semiconductors Application note

Using the 8XC751/752 in multimaster I2C applications AN430
PPCODEI1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 22
STR. ... B ADDR 009BH PREDEFINED
STSTRW. C ADDR 0055H
STX2 oo C ADDR 0085H NOT USED
STXBUF. D ADDR 0033H
STXED................c..... NUMB 0013H
STXEDR. CADDR 0310H
STXERR. CADDR O00AEH NOT USED
STXLPiiiinn. C ADDR 0093H
SUBADD B ADDR 0000H
T o C ADDR 0219H NOT USED
TI2. .o CADDR 021CH NOT USED
TI3. o C ADDR 0223H
T4 ... C ADDR 0225H
THSR ..., CADDR 0211H
TIMERI. CADDR 001BH NOT USED
TIRUN BADDR O00DCH PREDEFINED
TITOCNT. D ADDR 0029H
TOGCNT.c.c.u.e. D ADDR 0038H
TOGLED. B ADDR 0090H
TRQFLAG. B ADDR 0008H
XMADDR. CADDR 01C5H
XMBEXcooiviiinn... CADDR 01E1H
XMBIT..................... C ADDR 01DOH
XMBIT2. ...t CADDR 01D2H
XMBYTE................... CADDR 01CEH
XRETIcovviiiiiinnn.. CADDR 004CH

3

1992 Jun 26 139

Philips Semiconductors

Application note

I12C slave routines for the 83C751

Author: Greg Goodhue

The S83C751/S87C751 Microcontroller
combines in a small package the benefits of a
high-performance microcontroller with
on-board hardware supporting the
Inter-Integrated Circuit (12C) bus interface.

The 8XC751 can be programmed both as an
12C bus master, a slave, or both. An overview
of the 12C bus and description of the bus
support hardware in the 8XC751
microcontrollers appears in application note
AN422, “Using the 8XC751 Microcontroller
as an |2C Bus Master.” That application note
includes a programming example,
demonstrating a bus-master code. Here we
show an example of programming the
microcontroller as an I2C slave.

The code listing demonstrates
communications routines for the 8XC751 as a
slave on the 12C bus. It compliments the
program in AN422 which demonstrates the
8XC752 as an 12C bus master. One may
demonstrate two 8XC751 devices
communicating with each other on the 12C
bus, using the AN422 code in one, and the
program presented here in the other. The
examples presented here and in AN422 allow
the 751 to be either a master or a slave, but
not both. Switching between master and
slave roles in a multimaster environment is
described in application note AN435.

The software for a slave on the bus is
relatively simple, as the processor plays a
relatively passive role. It does not initiate bus
transfers on its own, but responds to a
master initiating the communications. This is
true whether the slave receives or transmits
data—transmission takes place only as a
response to a bus master’s request. The
slave does not have to worry about arbitration
or about devices which do not acknowledge
their address. As the slave is not supposed to
take control of the bus, we do not demand it
to resolve bus exceptions or “hangups”. If the
bus becomes inactive the processor simply
withdraws, not interfering with the master (or
masters) on the bus which should (hopefully)
try to resolve the situation.

The 8XC751 has a single bit I12C hardware
interface where the registers may directly
affect the levels on the bus, and the software
interacting with the hardware registers takes
part in the protocol implementation. The
hardware and the low level routines dealing
with the registers are tightly coupled. We
repeat here the warning from the 751
bus-master application note: one should take
extra care if trying to modify these lower level
routines.

The service routine for the 12C slave is
interrupt driven per message. This allows for
master communication requests which are

December 1990

not synchronized with the application
program running on the slave. It is possible to
write simple slave application programs
which will not be interrupt driven, taking care
not to lose master transmissions while doing
something else, but the user should be
discouraged from doing so. As the slave
should respond to asynchronous requests of
masters on the bus, an interrupt driven
service routine makes sense—and, as the
code demonstrates, is simple to implement.

DEMONSTRATION CODE

The main program operation, intended for
demonstration only, is simple. There are two
data buffers, one for data reception and one
for data transmission. When new data has
been received from the I2C bus into the
receive buffer, the program writes it into the
transmit buffer. The first and second bytes of
received data are also copied to Port 1 and
Port 3, respectively. When a bus master
requests to read data, Port 1 and Port 3 will
be returned for the first two bytes of
requested data, while the remaining bytes will
come from the transmit buffer. This allows for
simple testing of a master and slave system
by having the master compare data received
to data sent. This scheme also allows the
8XC751 to be used as a two-byte 12C /O
port.

The program begins at address 0, where the
microprocessor begins execution after a
hardware reset. This location contains a jump
instruction to the main program, which starts
at the label Reset (towards the end of the
listing). Upon reset, the program initializes
the stack pointer, the 12C address of the slave
processor (MyAddr) and clears the data
buffers and software flags. In this program
the receive and transmit buffers are each
eight bytes long—the maximum number of
bytes is defined by the label MaxBytes. One
may easily change the program to handle
longer messages by changing the value of
MaxBytes and allocating more data memory
to the buffers.

The I2C interface is configured to operate as
a slave by setting the msb of register I2CFG.
This is done simultaneously with loading the
appropriate value of CTVAL—bits CTO0 and
CTH1, which are determined by the frequency
of the microprocessor’s crystal. The interface
hardware is explicitly instructed to get into the
slave idle mode by setting the appropriate bit
in the I2CON register. Timer |, which
operates as a “watchdog” timer detecting bus
hangups, is activated and its interrupts are
enabled.

Atfter the initialization, the program gets to the
label MainLoop. Most of the time the program

140

AN433

will “hang” in a wait loop at this label, simply
waiting for an 12C interrupt to occur. When
there is an 12C bus request there will be an
interrupt, the service routine will be executed
and we shall return to the MainLoop label. If
the service routine receives new data, it sets
a flag, DatFlag, signalling that data has been
updated. This flag will allow us to leave the
MainLoop label, and execute a short routine
copying the updated input buffer to the output
(transmit) buffer.

If a new bus interrupt comes before
overwriting of the old read buffer data is
completed, and an undesirable “mix” of old
and new data might occur. This type of
situation is avoided by disabling the 12C
interrupts (clearing the IE2 bit in the Interrupt
Enable Register) just before copying the data
to the transmit buffer, and re-enabling the
interrupts when the copy operation is
completed.

When the copy routine is completed the
DatFlag is cleared and we jump back to
MainLoop, waiting for the next interrupt to
occur. If the interrupt is for data transmission
the service routine will not set DatFlag, and
upon return we shall remain at the MainLoop
label.

THE INTERRUPT SERVICE
ROUTINE

The service routine is interrupt driven with
respect to the start of each I2C frame, but
within each frame the interaction with the
hardware is based on polling. An occurrence
of a Start on the bus will cause an interrupt
that will initiate the service routine which
starts at address 23H. After saving registers,
all interrupts except the 12C interrupt itself are
enabled, as we want to allow response to
other interrupts during the routine. The
philosophy behind this is that the 12C may be
a lower priority than some other operations in
the system. Since the I2C hardware will
stretch the clock until the program responds,
an interrupt of reasonable duration will not
have a harmful effect on the data transfer.

Since we intend to react to the I2C hardware
by polling the ATN flag in wait loops, we do
not want the expected changes on the bus to
take us again to the beginning of the routine.
Therefore, the EI2 flag is cleared, masking
further 12C interrupts even when interrupts
are re-enabled (by the ACALL to a RETI
instruction).

At the label Slave, the routine starts receiving
the address on the bus. Each new address
bit is read after a software wait loop detects
that the ATN flag is set by the hardware. Note
that with the single bit implementation of the

Revision date: June 1993

Philips Semiconductors

Application note

I2C slave routines for the 83C751

AN433

12C port on the 8XC751 the software must
closely support the hardware: for example,
we need to explicitly clear the Start status
before we enter a wait loop for the next bit. If
the software does not clear the Start flag, the
hardware will stretch the low period of the
clock (SCL line) on the bus—and the first
address bit will simply not occur. (Such a
state will not go on forever—eventually the
processor will release the bus as a result of a
Timer | timeout.)

Reception of the eight bits of Address + R/W
is completed using part of the receive byte
subroutines. The address received is
compared to MyAddr, the address of this
specific slave. If the address is different the
processor goes idle and leaves the service
routine. If the message is intended for this
processor (received address matches
MyAddr) the Read/Write bit is tested, and the
program jumps to the appropriate labels.
When the R/W bit is low the master requests
a Write—and this slave should receive the
data written into it. When the R/W bit is high
the master is requesting a Read and this
slave should transmit the data (at code label
Read).

For “Master Write” we send an acknowledge
for the address byte and proceed with
receiving the data bytes, responding with an
acknowledge for each and transferring them
into the receive buffer. For long messages,
when the buffer is full (we have received
MaxByte bytes) we read from the bus one
additional byte and then send a negative
acknowledge, letting the master know it

December 1990

should stop sending us data. Then we set
DatFlag to signal the mainline program that
new data has been received, and jump to
MsgEnd. At the MsgEnd label we wait for the
next Stop or Repeated Start. On a Stop we
resume the idle mode (Goldle) and return
from the service routine. On a Restart the
slave process starts again with reception of
the new address at the label Slave.

If the message is short enough so that the
receive buffer is not filled up, the RcvByte
subroutine (called after WrtLoop) will return
due to the Stop condition, DRDY will not be
set, and we shall exit the loop via label
WLEx—setting the DatFlag and proceeding
to MsgEnd.

For “Master Read” the transmit buffer is sent
on the bus byte by byte in the RdLoop, using
the XmitByte subroutine. We exit the loop
when all the buffer is transmitted, or the
Master does not respond with an
acknowledge. Note that lack of
acknowledgement for slave transmission
does not necessarily indicate a problem or
that the receiving master is busy. This could
very well be a normal operation of the
protocol, which defines that a receiving
master signals the transmitting slave to end
its message by explicitly transmitting a
negative acknowledge as a response to the
last byte the master is interested in. The
protocol does not include inherent means for
specifying in advance the length of a
requested message.

141

SUBROUTINES

The lower level subroutines closely interact
with the hardware and the activity on the bus.
The XmitByte subroutine transmits one byte
and receives the acknowledge bit that comes
in response. The byte receive routine, which
one may use from different entry points,
receives a data or an address byte, and
takes care of acknowledgements. When a
Start or Stop is detected the subroutine
returns immediately—the calling routine is
expected to check the flags to determine
whether a whole byte has been received
(DRDY will be set), or a Start or a Stop
condition has occurred.

Close inspection of RcvByte code shows that
a total of nine bits are being read off the bus.
The first bit does not belong to the received
byte, but is the acknowledge this processor
sent in response of the former byte or
address. Reading the Ack bit from the I2DAT
register clears the Transmit Active state and
DRDY, thus releasing SCL and allowing the
bus activity to proceed to the next data bit.
Upon return the Ack bit is left in the Carry
flag, and the actual data byte received is
returned in the Acc register.

Upon Timer | interrupt code execution
commences at address 1BH, where there is
a jump to the service routine Timerl. This
interrupt is caused by the watchdog timer, as
aresult of an I2C bus that is “hanging”
without activity in the middle of a
transmission for too long a period of time.
The slave simply clears the bus interface,
and starts all over again at the label Reset.

Philips Semiconductors

Application note

I2C slave routines for the 83C751

AN433

ek kA K kR Ak Kk kK AR Rk kA Ak Ak kR AR Ak k kA k ko hk kA Ak ko ko kk ko kA Ak k kA Ak k Kk h ok x
i

H Sample I2C Slave Routines for the 8XC751 and 8XC752

; This program demonstrates I2C slave functions for the 8XC751 and 8XC752
microcontrollers. The program uses separate transmit and receive data

; buffers that are each eight bytes deep. The sample main program

copies received data to the transmit buffer such that transmitted data can
be read back by a bus master. Buffer addresses 0 and 1 are mapped to port 1
; and 3 respectively, such that an I2C write will affect the port outputs, and
an I2C read will return port pin data. The 751 will accept only eight data
bytes in any one I2C transmission, additional bytes will not be
acknowledged. Similarly, only eight data bytes may be read from the 751 in
any one I2C transmission. This program does not support subaddressing for

; buffer access.

;***i*****************

$TITLE(8XC751 I2C Slave Routines)
SDATE(11/23/92)
$MOD752

;***r***t***********

; Value definitions.

CTVAL EQU 02h ; CT1l, CTO bit values for I2C.
MaxBytes EQU 8 ; Maximum # of bytes to be sent or
i received.

; Masks for I2CFG bits.

BTIR EQU 10h ; Mask for TIRUN bit.
BMRQ EQU 40h ; Mask for MASTRQ bit.

; Masks for I2CON bits.

BCXA EQU 80h ; Mask for CXA bit.
BIDLE EQU 40h ; Mask for IDLE bit.
BCDR EQU 20h ; Mask for CDR bit.
BCARL EQU 10h ; Mask for CARL bit.
BCSTR EQU 08h ; Mask for CSTR bit.
BCSTP EQU 04h ; Mask for CSTP bit.
BXSTR EQU 02h ; Mask for XSTR bit.
BXSTP EQU 01h ; Mask for XSTP bit.

; RAM locations used by I2C routines.

RcvDat DATA 10h ; I2C receive data buffer (8 bytes).
H addresses 10h through 17h.

XmtDat DATA 18h . ; I2C transmit data buffer (8 bytes).
; addresses 18h through 1Fh.

Flags DATA 20h ; I2C software status flags.

NoAck BIT Flags.7 ; Holds negative acknowledge flag.

DatFlag BIT Flags.6 ; Tells whether an I2C write operation
i has occurred.

BitCnt DATA 21h ; I2C bit counter.

ByteCnt DATA 22h ; Send/receive byte counter.

TDAT DATA 23h ; Temporary holding register.

MyAddr DATA 24h ; Holds address of THIS slave.

AdrRcvd DATA 25h ; Holds received slave address + R/W.

RWFlag BIT AdrRcvd.0 ; Slave read/write flag.

December 1990 142

Philips Semiconductors

Application note

I2C slave routines for the 83C751

AN433

R R R

;

Begin Code

R R R e

; Reset and interrupt vectors.

AJMP

Reset

H

Reset vector at address 0.

; A timer I timeout usually indicates a ‘hung’ bus.

ORG
AJMP

1Bh
TimerI

i

Timer I (I2C timeout) interrupt.

; I2C interrupt is used to detect a start while the slave is idle.

ORG
PUSH
PUSH
CLR
ACALL

23h
PSW
ACC
ES
ClrInt

I2C interrupt.

Save status.

Save accumulator.
Disable I2C interrupt.
Re-enable interrupts.

R R R e R R R R RS

i

Main Transmit and Receive Routines

R R R Y

Slave:

WrtLoop:

WLEX:

Read:

RdLoop:

RAL1:

RAL2:

MoV
JNB
MOV

ACALL
MOV
CLR
CJINE

JB
MOV
MoV

ACALL
ACALL
JNB
MoV
INC
DJINZ
ACALL
ACALL
MOV
JNB
SETB
SIMP

MoV
MOV
ACALL

MOV
CJINE
MOV
CINE
MOV

INC
ACALL
JB
DJINZ

December 1990

I2CON, #BCARL+BCSTP+BCSTR+BCXA ; Clear start status.

ATN, $
BitCnt, #7
RcvB2
AdrRcvd, A
ACC.0

A,MyAddr, GoIdle

RWFlag, Read
RO, #RcvDat
ByteCnt, #MaxBytes

SendAck
RcvByte
DRDY, WLEx
@RO,A

RO
ByteCnt, WrtLoop
SendAck
RcvByte
I2DAT, #80h
ATN, $
DatFlag
MsgEnd

RO, #XmtDat
ByteCnt, #MaxBytes
SendAck

A,@RO

RO, #XmtDat,RAL1
A,Pl

RO, #XmtDat+1, RAL2
A,P3

RO

XmitByte
NoAck, RLEx
ByteCnt, RdLoop

i

Wait for next data bit.
Set bit count.

Get remainder of slave address.
Save received address + R/W bit.

Enter idle mode if not our address.

Read or Write?
Set up receive buffer pointer.
Max 4 bytes can be received.

Send acknowledge.

Get data byte from master.

Must be end of frame?

Save data.

Advance buffer pointer.

Back to receive if buffer not full.
Send acknowledge.

Get, but do not store add’l data.
Send negative acknowledge.

Wait for acknowledge sent.

Flag main that data has been received.
Buffer full, enter idle mode.

Set up transmit buffer pointer.
Max bytes to be sent.
Send address acknowledge.

Get data byte from buffer.

Return port 1 value instead of buffer
data if this is buffer address 0.
Return port 3 value instead of buffer
data if this is buffer address 1.

Advance buffer pointer.

Send data byte.

Exit if NAK.

Back if more data requested & avail.

143

Philips Semiconductors

Application note

I2C slave routines for the 83C751

AN433

RLEX: SJMP

MsgEnd: JNB
JB

GoIdle: ulevs
POP
POP
SETB
RET

PR R R Y

i

R e T T T T

MsgEnd ; Done, enter idle mode.
ATN, $; Wait for stop or repeated start.
STR, Slave ; If repeated start, go to slave mode,

; else enter idle mode.

I2CON, #BCSTP+BCXA+BCDR+BCARL+BIDLE ; Enter slave idle mode.

ACC ;i Restore accumulator.
PSW ; Restore status.
ES ; Re-enable I2C interrupts.

Subroutines

; Byte transmit routine.
; Enter with data in ACC.

XmitByte: MOV

XmBit: MOV
RL
JNB
DJNZ
MoV
JNB
MoV
RET

BitCnt, #8 ; Set 8 bits of data count.
I2DAT,A ; Send this bit.

A ; Get next bit.

ATN, $; Wait for bit sent.
BitCnt,XmBit ; Repeat until all bits sent.
I2CON, #BCDR+BCXA ; Switch to receive mode.
ATN, $; Wait for acknowledge bit.

Flags, I2DAT

Save acknowledge bit.

Byte receive routines.
SendAck : sends an I2C acknowledge.
RcvByte : receives a byte of data.

7 bits of slave address information.
Data is returned in the ACC.

i
; RcvB2 : receives a partial byte of I2C data, used to allow reception of

SendAck: MOV
JNB
RET

RcvByte: MOV
RcvB2: CLR
RBit: ORL
RL
JNB
JNB
DJNZ
MOV
RLC
RBEX: RET

I2DAT, #0 ; Send receive acknowledge.
ATN, $; Wait for acknowledge sent.
BitCnt, #8 ; Set bit count.

A ; Init received byte to 0.

A, I2DAT ; Get bit, clear ATN.

a ; Shift data.

ATN, $; Wait for next bit.

DRDY, RBEx ; Exit if not a data bit.
BitCnt,RBit ; Repeat until 7 bits are in.
C,RDAT ; Get last bit, don’t clear ATN.
A ; Form full data byte.

; Timer I timeout interrupt service routine.

TimerI: SETB
MoV
MOV
ACALL
AJMP

ClrInt: RETI

December 1990

CLRTI ; Clear timer I interrupt.

I2CFG, #0 ; Turn off I2C.

I2CON, #BCXA+BCDR+BCARL+BCSTR+BCSTP ; Reset I2C flags.
ClriInt ; Clear interrupt pending flag.
Reset ; Return to mainline.

Philips Semiconductors Application note

I2C slave routines for the 83C751 AN433

;**i**i*********************

; Main Program

;***

Reset: MOV SP, #2Fh ; Set stack location.
MOV IE,#90h ; Enable I2C interrupt.
MoV RO, #RcvDat ; Set up pointer to data area.
MoV R1, #2*MaxBytes ; Set up buffer length counter.
RLoop: MoV @RO, #0 ; Clear buffer memory.
INC RO ; Advance to next buffer position.
DJINZ R1,RLoop ; Repeat until done.
MOV MyAddr, #40h Set slave address.
MOV Flags, #0 Clear system flags.

MOV I2CON, #BIDLE Put slave into idle mode.
SETB ETI Enable timer I interrupts.

i
MOV I2CFG, #80h+CTVAL ; Enable slave functions.
H
SETB TIRUN ; Turn on timer I.

This sample mainline program copies the first two received bytes to Port 1
and Port 3 whenever there is an I2C write operation. It Also copies the
; rest of the input buffer to the output buffer at the same time.

MainLoop: JNB DatFlag, $; Wait for data sent from I2C.
CLR EA ; Turn off interrupts during data move.
MOV P1l,RcvDat ; First buffer location goes to port 1.
MOV P3,RcvDat+1 ; Second buffer location goes to port 3.
MOV RO, #RcvDat ; Set input buffer start pointer.
MOV R1, #XmtDat ; Set output buffer start pointer.
MoV R2, #MaxBytes ; Set buffer length counter.

ML2: MOV A,@RO ; Get data from input buffer.
MOV @R1,A ; Store data in output buffer.
INC R1 ; Increment input buffer pointer.
INC RO ; Increment output buffer pointer.
DJINZ R2,ML2 ; Repeat until entire buffer is updated.
CLR DatFlag ; Clear I2C transmission flag.
SETB EA Data move done, re-enable interrupts.

SJIMP MainLoop Wait for next I2C transmission.

END

December 1990 145

Philips Semiconductors

Application note

L .~ — ——— —]
Connecting a PC keyboard to the I2C-bus
L -]

CONNECTING A PC KEYBOARD
TO THE I2C BUS

This application note illustrates the use of a
low-cost 8-bit microcontroller—the
8XC751—to interface a standard PC/AT
keyboard to the 12C bus. The 8XC751
(83C751 = ROM-version, 87C751 =
EPROM-version) is ideally suited for the task
thanks to its built-in I2C interface, small
form-factor (24-pin DIP or 28-pin PLCC) and
low power consumption (11mA typical @12
MHz; see Figure 1). The application software
easily fits within the 2K bytes code and 64
bytes data memory provided on the 8XC751.

P3.4IA4|I ~ E vee
P3.3/A3[2] 23] Pa.s/AS
P3.2/A2/A10[3 [22] Pa.sins
PaAUAS[4] cepamic [21] PR7IAT
P3.0/A0/A8[5 | LA 20] P1.770D7
Po.2vpp 8] INLINE [19] P1.6/NTT/D6
PO./SDA/[7] PA%SGE 18] P1.5/NTODS
OE-PGM SHRINK
Po.oﬁ\ss%{) osul\%l_&E [17] P1.4/Da
RsT[9] PACKAGE [4g] P1.3D3

xa [19) 15] P1.2D2
x1 [11] [14] P1./D1
vgs [73] P1.0/D0

4 1 26
s °© 25
PLASTIC
LEADED
CHIP
CARRIER
10 (] 19
o
12 18
Pin Function Pin Function

1 P3.4/A4 15 P1.0/DO

2 P3.3/A3 16 P1.1/D1

3 P3.2/A2/A10 17 P1.2/D2

4 P3.1/A1/A9 18 P1.3/D3

5 N.C. 19 P1.4/D4

6 P3.0/A0/A8 20 P1.5iNTO/D5

7 P0.2Npp 21 N.C.

8 PO.1/SDA/OE-PGM 22 N.C.

9 PO0.0/SCLASEL 23 P1.6INTi/D6
10 N.C. 24 P17/T0/D7
1 RST 25 P3.7/A7
12 X2 26 P3.6/A6
13 Xt 27 P3.5/A5
14 Vgs 28 Vgo

SU00315

Figure 1. Pin Configuration

1992 Aug 26

The PC/AT Keyboard

The PC/AT keyboard transmits data in a
clocked serial format consisting of a start bit,
8 data bits (LSB first), an odd parity bit and a
stop bit as shown in Figure 2. Besides clock
and data, the 5-pin connector (Figure 3) also
includes power, ground and a no connect.
Note that the PS/2 keyboard interface is
logically equivalent, though it uses a different
connector. (A sixth pin provides an additional
no connect).

When a key is pressed, the PC/AT keyboard
transmits a ‘make’ code and, when the key is
released, a ‘break’ code. The make code
consists of an 8-bit ‘scan’ code denoting the
key pressed. The ‘break’ code (key released)
consists of the same 8-bit scan code
preceded by a special code—0FOQH.

A notable difference from a regular ASCII
keyboard is the way SHIFT, CTRL, ALT, etc.
control keys work. For an ASCII keyboard,
the control keys directly modify the code
output. For example, a 61H (ASCII code for
‘a’) is output if the ‘A’ key is pressed by itself,
while a 41H (ASCII code for ‘A’) is output if
the SHIFT and ‘A’ keys are pressed
simultaneously.

The PC/AT keyboard handles such a key
combination as two separate key presses,
i.e., SHIFT-MAKE, ‘A-MAKE, SHIFT-BREAK,
‘A-BREAK. The ‘A’ scan code (1CH) is the
same for both the shifted and unshifted state.
To determine whether the ‘A’ scan code is
interpreted as ‘A’ or ‘a’ the PC must keep
track of the presence or absence of a prior
SHIFT-MAKE.

Keyboard-to-12C Hardware
(Figure 4)

The 8XC751 on-chip I2C interface allows
direct connection of the SDA (Serial Data)
and SCL (Serial Clock) pins to the
corresponding I2C bus lines. Since the 12C
bus is open collector (allowing multimasters),
10K resistors are used to pull the lines to the
idle state between keypresses.

The PC/AT keyboard interface is equally
simple. The CLK output from the keyboard is
used to generate an interrupt (INTO). In
response, the 8XC751 interrupt service
routine samples the keyboard serial DATA
connected to port 0 bit 2 (P0.2).

When used with a PC, the keyboard
implements a bidirectional communication

146

AN434

protocol by exploiting the fact that both the
keyboard and PC can drive the open
collector CLK and DATA lines. However,
bidirectional communication is not required
for basic keyboard operation and in this
application, the keyboard is treated as an
‘input-only’ device.

Keyboard-to-12C Software
The keyboard-to-12C software performs three
major functions:

® Capture the clocked serial data from the
keyboard

® Translate the keyboard data to the
corresponding ASCII code

® Send the ASCII code as an 12C message.

When a key is pressed, the CLK output from
the keyboard generates an interrupt via INTO.
The 8XC751 shifts in the DATA from the
keyboard on P0.2 (port 0, bit 2) and extracts
the 8-bit scan code from the 11-bit packet.

Next, the scan code is interpreted and
converted to the corresponding ASCII code
using a look-up table. Keyboard multi-code
outputs are converted to single ASCII codes
by tracking the state (i.e. shifted vs.
unshifted) of the keyboard and using
separate look-up tables for each. For
example, a keyboard SHIFT-MAKE,
‘A-MAKE, SHIFT-BREAK, ‘A-BREAK
sequence is converted to the ASCII code for
uppercase ‘A’ (41H). The flowchart in

Figure 5 depicts the keyboard data capture
and code conversion process.

The 8XC751 operates as an 12C slave. When
the master issues a read command, the
8XC751 returns the converted ASCII
character. The seven least significant bits are
used for the ASCII code, while the most
significant bit is used as a NEW flag

(0 = new, 1 = old). The key code remains
marked as new until the master issues a
write to the 8XC751 at which point it is
marked as old and will be overwritten by the
next key processed.

The keyboard-to-12C software is shown
immediately following Figure 5. Less than half
the code space available on the 8XC751 is
used, leaving room for extra features such as
parity checking and more complete keyboard
control state mapping using additional
look-up tables.

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

l" 20us typ.

DATA N start_<_Do 51 X 2 X 03 X b2 X b5 X e X b7 X parity > stop
ok—/ 1 rrererererererer

80us typ.
5U00398
Figure 2. PC/AT Keyboard Timing
RESET CLOCK
5VOLTS GND
DATA
5000399
Figure 3. Keyboard Connections (looking into the connector)
KEYBOARD CONNECTOR Vee =5vO
1 24
—] N/C vce
N/ > 2. 2 2 23
¢ 10K 1K 10K — NIC V]
.i N/C N/C _23 :: 10K
—“Ane vl §
5 8 20
—{nC 5 NCE—
v 6 we L1
N— Po.2 (o] —
7 18
r SDA 7 INTO
8 17
= . sc. 5 Nef—
1 1
e ast 1 wncle
10 15
SDA o L 190, N/C F—
SCL ’ 11.06MHz 11 14
P ca X2 e 4
PWR 12 13
-E— vss N/C |—
GND GND GND
"1
N
SU00400

Figure 4. IBM Keyboard to 12C Bus Format Using the 8XC751

1992 Aug 26 147

Philips Semiconductors Application note

Connecting a PC keyboard to the 12C-bus AN434

Save registers
BIT#=07
N Shift keyboard DATA line
Bit#=11t08 ? (P0.2) into variable KEY.
. Parity check
Bit#=9 ? (optional)
KEY=SHIFT ? Ry~ Set SHIFT flag
?
Clear SHIFT flag
CTRL key handling
KEY=CTRL ? (optional)
KEY=BREAK LASTKEY=BREAK code
code ?
LASTKEY =
BREAK code,
?
LASTKEY=KEY
SHIFT flag ‘ Translate to ASCII using
set ? ‘shifted’ look-up table
Translate to ASCII using
‘unshifted look-up table
N
[
BIT#=0 BIT#=BIT#+1
L |
|
Restore Registers
5000401

Figure 5. Keyboard Data Capture and Conversion

1992 Aug 26 148

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0001+
0002+
0003+
0004+
0005+
0006+
0007+
0008+
0009+
0010+
0011+
0012+
0013+
0014+
0015+
0016+
0017+
0018+
0019+
0020+
0021+
0022+
0023+
0024+
0025+
0026+
0027+
0028+
0029+
0030+
0031+
0032+
0033+
0034+
0035+
0036+
0037+
0038+
0039+
0040+
0041+
0042+
0043+
0044+
0045+
0046+
0047+

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

1992 Aug 26

;xtt*****t***********************
i i
H Copyright Micro AMPS Ltd H
i & Philips Semiconductors i
; Dec 1990 i

H
R KKK KKk R KK KRR KRk KRk ok ko ko

; Read data under interrupt from an IBM keyboard
; Hardware resources:

i Kbd clock on interrupt INTO P1.5

; Kbd data on pin P0.2

; This program reads keys in from the keyboard
; and translates them to ASCII

#include equates.51
; direct addresses for the standard 8051 processor

pO .equ 80h ; port O

sp .equ 81h ; stack pointer
dpl .equ 82h ; data pointer low
dph .equ 83h ; data pointer high
pcon .equ 87h ; power control
tcon .equ 88h ; timer control
tmod .equ 8%h ; timer mode

tl0 .equ 8ah ; timer 0 low

tho .equ 8ch ; timer 0 high

thl .equ 8dh ; timer 1 high

pl .equ 90h ; port 1

scon .equ 98h ; serial control
sOcon .equ 98h ; serial control
sObuf .equ 9%h ; serial data

p2 .equ 0aOh ; port 2

p3 .equ 0bOh ; port 3

ien0 .equ 0a8h ; interrupt enable
ie .equ Oa8h

psw .equ 0dOh ; program status word
acc .equ OeOh ; accumulator

b .equ 0f0h ; b register

; bit addressed flags

it0 .equ 88h ; int 0 edge/level trigger
ie0 .equ 8%h ; int 0 edge detect

itl .equ 8ah ; int 1 edge/level trigger
iel .equ 8bh ; int 1 edge detect

tro .equ 8ch ; timer 0 enable/disable
tfo .equ 8dh ; timer 0 overflow detect
trl .equ 8eh ; timer 1 enable/disable
tfl .equ 8fh ; timer 1 overflow detect
ri .equ 98h

ti .equ 9%h

ien0.7 .equ Oafh ; global int enable/disable

p0.0 .equ 080h port 0 bit 0

149

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

0048+
0049+
0050+
0051+
0052+
0053+
0054+
0055+
0056+
0057+
0058+
0059+
0060+
0061+
0062+
0063+
0064+
0065+
0066+
0067+
0068+
0021

0001+
0002+
0003+
0004+
0005+
0006+
0007+
0008+
0009+
0010+
0011+
0012+
0013+
0014+
0015+
0016+
0017+
0018+
0019+
0020+
0021+
0022+
0023+
0024+
0025+
0026+
0027+
0028+
0029+
0030+
0031+
0032+
0033+
0034+
0035+
0036+
0037+
0038+
0039+
0040+
0041+
0042+
0043+
0044+
0045+

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
000
0000
0000

1992 Aug 26

oo UUooooyo
Nouks WO

[CIN I R IV
Nou WN O

rth
rtl

.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ

.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ

.equ
.equ

#include kbd.h
#define reg .e

i

; 8xc751 special register set

; 751 I2C byte registers

I2CON
I2CFG
I2DAT
I2STA

I1E
TCON
TL
TH

RTL
RTH

; 751 I2C bit registers

;i I2CNFG

SLAVEN
MASTRQ
TIRUN
cT1
CT0
CLRTI

RDAT
ATN
DRDY
ARL
STR
STP
MASTER

; I2CON
CXA

IDLE
CDR

.equ
.equ
.equ
.equ

-equ

.equ

.equ
.equ
.equ
.equ

.equ
.equ
.equ
.equ
.equ
.equ
.equ

.equ
.equ
.equ

0f0h
0flh
0f2h
0£f3h
0f4h
0f5h
0f6h
0£f7h

0OeOh
Oelh
Oe2h
Oe3h
Oes4h
O0eS5Sh
Oebh
Oe7h

8dh
8bh

qu

098h
0d8h
099%h
0f8h

0a8h

088h

08ah
08ch
08bh
08dh

0dfh
Odeh
0dch
0d%h
0ds8h
0ddh

09fh
09eh

09ch
09bh
09ah
099h

09fh
09eh
09dh

H

H

H

b reg bits

accumulator bits

timer 0 reload high
timer 0 reload low

I2C control

I2C configuration
I2C data

I2C status

interrupt enable
timer/counter control
timer 0 low

timer 0 high

timer reload low
timer reload high

150

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

0046+ 0000
0047+ 0000
0048+ 0000
0049+ 0000
0050+ 0000
0051+ 0000
0052+ 0000
0053+ 0000
0054+ 0000
0055+ 0000
0056+ 0000
0057+ 0000
0058+ 0000
0059+ 0000
0060+ 0000
0061+ 0000
0062+ 0000
0063+ 0000
0064+ 0000
0065+ 0000
0066+ 0000
0067+ 0000
0068+ 0000
0069+ 0000
0070+ 0000
0071+ 0000
0072+ 0000
0073+ 0000
0074+ 0000
0075+ 0000
0076+ 0000
0077+ 0000
0078+ 0000
0079+ 0000
0080+ 0000
0081+ 0000
0082+ 0000
0083+ 0000
0084+ 0000
0085+ 0000
0086+ 0000
0087+ 0000
0088+ 0000
0089+ 0000
0090+ 0000
0091+ 0000
0092+ 0000
0093+ 0000
0094+ 0000
0022 0000
0023 0000
0024 0000
0025 0000
0026 0000
0027 0000
0028 0000
0029 0000
0030 0000
0031 0000
0032 0000
0033 0000
0034 0000
0035 0000
0036 0000
0037 0000
0038 0000
0039 0000

1992 Aug 26

CARL .equ 09ch
CSTR .equ 09bh
CSTP .equ 09ah
XSTR .equ 09%h
XSTP .equ 098h
; I2STA

XDATA .equ 0fdh
XACTV .equ Ofch
MAKSTR .equ 0fbh
MAKSTP .equ Ofah

; IE bit registers

EA .equ Oafh
EI2 .equ Oach
ETI .equ Oabh
EX1 .equ Oaah
ETO .equ OaSh
EXO0 .equ 0a8h

; Value definitions.

CTVAL .equ 02h

; clr
; set
; set
i set
; set
; set

;CT1,

; Masks for I2CFG bits.

BTIR
BMRQ

.equ 10h
.equ 40h

; mask
; mask

; Masks for I2CON bits.

BCXA .equ 80h
BIDLE .equ 40h
BCDR .equ 20h
BCARL .equ 10h
BCSTR .equ 08h
BCSTP .equ 04h
BXSTR .equ 02h
BXSTP .equ O0l1lh
SCL .equ p0.0
SDA .equ p0.1
IICADD .equ 088h

MAXBYTES .equ 1

; mask
; mask
; mask
; mask
; mask
; mask
; mask
; mask

; port
; port

to
to
to
to
to
to

disable all interrupts

enable iic interrupt

enable timer 1 overflow interrupt

enable ext int 1

enable timer 0 overflow interrupt

enable ext int 0

CTO0 bit values for I2C.

for TIRUN bit.
for MASTRQ bit.

for CXA bit.

for IDLE bit.
for CDR bit.

for CARL bit.
for CSTR bit.
for CSTP bit.
for XSTR bit.
for XSTP bit.

bit
bit

; our I2C slave address
; max bytes to recv or trans

; I2C received data buffer
; I2C transmitter buffer

rcvdat .equ 04h

xmtdat .equ 06h

STACK .equ 08h

flags .equ 020h

noack .equ (flags-20h)
recvd .equ (flags-20h)+1

sent_flag .equ (flags-20h)+2
i2c_busy .equ (flags-20h)+3

Cntrl .equ (flags-20h)+8
Shift .equ (flags-20h)+9

i

byte used as flags
12C flags.O, ...1,

control key flag
shift key flag

151

..2,

for I2C serial clock line.
for I2C serial data line.

etc

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106

005C
005C
005F
0062
0065
0065
0068

1992 Aug 26

01

21

21

21

01

78
79

D8
DS
DA
75

75

75
D2

bitent
bytecnt

adrrcvd
rwflag

tick
i2ctime

NBits
NBytes
lastkey
keytemp
keybuff

INMAX
KEYCLK
KEYDAT

EDGEINT

.equ
.equ

-equ
.equ

.equ
.equ

.equ
.equ
.equ
.equ
.equ

flags+2
flags+3

flags+4

(adrrcvd-20h) *8 ; adrrcvd.O

025h
027h

2%9h
NBits+1
NBytes+1
lastkey+1
keytemp+1

.equ 8
.equ pl.5
.equ 82h

.equ 08ah

i

H

H

count 10mS ticks to give lsec tick
I2C timeout - used on slow I2C bus

bits read so far

bytes in buffer

last key was?

used to build the key bit by bit
store the chars here

size of keyboard buffer
keyboard clock signal on ext int 0
keyboard data line

; reset and interrupt vectors.

;

50

B5

DA

38

done:
48

start:
FF
FF
04

.org 0
ajmp start

.org 0003h
ajmp kbd

.org Obh
ajmp badint

.org 013h
ajmp badint

.org 0lbh
ajmp timerI

.org 023h
ajmp i2cint

.org 48h

ajmp $

.org 50h

mov r0,#0ffh
mov rl,#0ffh
mov r2,#04h

dlyl:djnz r0,$
djnz rl,dlyl
djnz r2,dlyl

mov p0, #0ffh
mov pl,#0ffh
mov p3,#0ffh

mov sp, #STACK
setb EDGEINT

; main

reset vector

external interrupt 0

counter/timer 0

external interrupt 1

timer 1 - I2C timeout

I2C interrupt

routine waiting for key presses

i power supply settling time

; initialize stack pointer

; make ext int 0 edge activated

152

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

0107 006A

0108 006A C2 09 clr shift

0109 006C

0110 006C 78 29 mov r0, #NBits
0111 006E 79 10 mov rl,#10h
0112 0070 75 EO 00 mov acc, #0

0113 0073

0114 0073 F6 clrlp:mov @r0,a
0115 0074 08 inc r0

0116 0075 D9 FC djnz rl,clrlp
0117 0077

0118 0077 ; mov xmtdat,#’.’
0119 0077 ; mov xmtdat+1,#0ffh
0120 0077

0121 0077 75 20 00 mov flags, #0
0122 007A 75 27 00 mov i2ctime, #0
0123 007D

0124 007D restart:

0125 007D

0126 007D 75 D8 82 mov I2CFG, #80h+CTVAL
0127 0080 75 98 40 mov I2CON, #BIDLE
0128 0083

0129 0083 75 A8 91 mov ienO,#91h
0130 0086

0131 0086

0132 0086 jR***k* Main loop KEFEA¥
0133 0086

0134 0086 main:

0135 0086 E5 2A mov a,NBytes
0136 0088 60 OC jz empty

0137 008A

0138 008A 75 A8 00 mov ienO, #0h
0139 008D 85 2D 06 mov xmtdat, keybuff
0140 0090 75 2A 00 mov NBytes, #0
0141 0093 75 A8 91 mov ienO, #91h
0142 0096

0143 0096 empty:

0144 0096

0145 0096 30 01 oA jnb recvd,notread
0146 0099

0147 0099 85 06 EO mov acc,xmtdat
0148 009C 44 80 orl a,#80h

0149 009E 85 EO 06 mov xmtdat,acc
0150 00A1

0151 00A1

0152 00A1 Cc2 01 clr recvd

0153 00A3

0154 00A3 notread:

0155 00A3

0156 00A3 E5 2B mov a,lastkey
0157 00A5 C3 clr c

0158 00A6 94 11 subb a,#11h
0159 00a8 70 01 jnz notalt

0160 00AA

0161 00Aaa 00 nop

0162 00AB

0163 00AB notalt:

0l64 00AB E5 2A mov a,NBytes
0165 00AD C3 clr c

0166 00AE 94 08 subb a, #INMAX
0167 00BO 40 01 jc notdone

0168 00B2

0169 00B2 00 nop

0171 00B3

0172 00B3 notdone:

0173 00B3

0174 00B3 80 D1 sjmp main

1992 Aug 26

153

clear keyboard shift flag

clear the input buffers

do the clearing

transmit buffer filled with
$ff when empty

enable slave functions
place in idle state

enable external & IIC interrupts

if data in keybuff then
copy to I2C xmt buffer

disable all ints temporarily

clear keyboard buffer full flag
enable external&IIC interrupts

recvd flag tells 751 to clear
I2C xmt buffer when I2C master
reads the data from the 751
the master writes any data
back which will set the MSB of
the data buffer. This is reqd.
to sync the two processors.
reset I2C received flag

detect alt key for special
for special functions

alt code goes here

limit the input buffer to INMAX
if data is buffered

then buffer overflow

code goes here

go back to start

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241

00B5
00B5
00B5
00B5
00B5
00B5
00B5
00B5
00B5
00B5
00B5
00B5
00BS
00B7
00B9
00B9
00BC
00BC
00BF
00BF
00BF
00BF
00BF
00BF
00BF
oocl
oocl
0oc1
ooc1l
0oc1i
0oc1i
00Cc4
00Cé
00Cé
00cs
ooca
00CB
00CD
00D0
00D2
00D2
00D2
00D2
00D2
00D2
00D5
00D5
00D7
00D7
00D7
00D7
00D7
00D7
00D7
00D7
00D7
00DA
00DA
00DD
00DD
00DD
00DD
00DD
00EO
00E3
00E3
00ES

1992 Aug 26

co
co

85

B4

80

B4
50

A2
E5
03

85
80

B4

B4

85
B4

c2
75

. %
i

kb
DO
EO
29

00

L%
bi
70

.
bi
09
oc

82
2C

E7

EO
5F

.k
;

bi
09

5A

.k
i

* kKKK *kkkkk

End of Main loop

*ok kKKK

External int 0 ISR

* ok ok ok kK .
i

i
keyboard interrupt service routine ;
i
*******************************t****;

d:
push psw ;
push acc

EO mov acc,NBits

02 cjne a,#0,bitl_8

* ok ok ok ok * Kk Kk Kk k ok

Keyboard Bit 0

t0:

sjmp bump

*kkkk Kk kKKK

Keyboard Bit 1-8

tl_8:
00 cjne a,#9,$+3

jnc bit9

mov c,KEYDAT
mov a, keytemp ;
rr a

mov a.7,c

mov keytemp,acc
sjmp bump

2C

* KKKk * kKK k K

Bit 9

t9:

02 cjne a,#9,bitl0

sjmp bump ;

Kok ok ok kK

*k%xkx Bit 10

save .equs during ISR

NBits=bit number next expected
from the keyboard
if not bit 0 then bit 1 to 8

discard bit 0 - Start bit

; CY flag is set if acc < 9

read data for keyboard data line
data arrives least sig bit ‘1lst
hence old value is rotated and new
bit is or’ed to the msb

parity check code would go here

; The stop bit - Key Scan is now complete so convert to ASCII

bi
2C

12

. x
i

2B
FO

09
2B

t10:

EO mov acc, keytemp H

14 cjne a,#12h,notls ;

***** Left Shift has Been Pressed

EO mov acc, lastkey ;

07 cjne a,#0£0h,makels ;
clr Shift ;

12 mov lastkey, #12h ;

154

get next key

is it the left shift char?

*ok kK Kk

if last key was
$£0 then shift is released

next keys will be unshifted
copy left shift key to last key

Philips Semiconductors

Application note

Connecting a PC keyboard to the I2C-bus

AN434

0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308

00E8

00EA D2

75
80

00F1 B4

0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~

1992 Aug 26

00
80

B4

F5
80

85
B4

75
80

3F sjmp tidy
makels:
09 setb shift
2B 12 mov lastkey, #12h
38 sjmp tidy
;***xxx End of Shift Routine |*****x
notls:
H mov acc, keytemp
14 03 cjne a,#14h,notctrl
j***%** Control State *xxxx*
nop
32 sjmp tidy
;****x** End of Control State *****x
notctrl:
FO 04 cjne a, #0£f0h,notbreak ;
GRS Key Break kxkEk*
2B mov lastkey,a
2B sjmp tidy
notbreak:
2B EO mov acc, lastkey
FO 05 cjne a,#0f0h,not_£0
2B 00 mov lastkey, #0
20 sjmp tidy
not_f£f0:
je*x*%x*x Normal Key Press ***x*x
#ifdef buffered
FREKHKKR Buffered Code % ek kK
; buffered code
push 0
mov acc, #keybuff
add a,NBytes
mov r0,a
mov a, keytemp
mov lastkey,a
push dph
push dpl
jb Shift,shifted
mov dptr, #unshift
sjmp skipl
shifted:

mov dptr, #shift

155

next keys will be shifted
copy left shift key to last key

; get next key

is it a control char?

control state goes here

if current key $f0 then break

record break code in last key
but don’t store in the buffer

if last key was $f0 then
ignore the next scan code

which is a break code

r0 used as an indirect pointer
so save it
copy data into keyboard

get current key
& copy to lastkey

dp used to point to xlat tables
since in ISR save dp contents

if in unshifted state
use the unshift table

else use the shift table

Philips Semiconductors

Application note

Connecting a PC keyboard to the [2C-bus

AN434

0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375

0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109~
0109
0109
0109
0109
0109
0109
0109
0109
010B
010D
010D
010F
0111
0111
0114
0117
0119
0119
0119
0i1c
0l1c
0l1lc
011D
011D
011F
0121
0121
0124
0124
0124
0124
0124
0126
0129
0129
0129
012c
012F
0131
0131
0131
0131
0131
0131
0131
0131
0133

1992 Aug 26

ES
F5

co
co

20

80

F5
75

skipl:
movc a,@a+dptr

pop dpl
pop dph

cjne a, #0,Not0

; sjmp NoSave
NotO:

mov r0, #keybuff

mov @r0,a

inc NBytes

NoSave:
pop 0 ; restore r0

;**** End of Buffered Code

#endif

#define unbuffered 1

#ifdef unbuffered

2C mov a, keytemp
2B mov lastkey,a

83 push dph

82 push dpl

09 05 jb shift,shifted

01 EB mov dptr, #unshift
03 sjmp skipl

shifted:
02 6B mov dptr, #shift

skipl:

movc a,@a+dptr
82 pop dpl
83 pop dph

00 00 cjne a,#0,Not0
; sjmp tidy

NotO:
2D mov keybuff,a
2A 01 mov NBytes, #1

tidy:

29 00 mov NBits, #0
2C 00 mov keytemp, #0
02 sjmp intdone

translate char in Acc to Ascii

restore the data pointer

if data is zero discard

discard code goes here

Save ascii value in buffer
buffered keyboard entry

get current key
& copy to lastkey

dp used to point to xlat tables
since in ISR save dp contents

if in unshifted state
use the unshift table

else use the shift table

translate char in Acc to Ascii

restore the data pointer

if data is zero discard

discard code goes here

store in keyboard buffer
mark byte read

clear flags ready for next key

j*¥***%% End of Keyboard Translation and Save ***xxx

jr¥***xx Normal unfinished key exit **xxxx

bump:
29 inc NBits

H

inc number of bits read so far

Philips Semiconductors Application note

Connecting a PC keyboard to the 12C-bus AN434

0376 0133 intdone:

0377 0133 DO EO pop acc

0378 0135 DO DO pop psw

0379 0137 32 reti

0380 0138

0381 0138 ;*¥*x*x%x*x End of Ext Int 0 ISR *****x

0382 0138

0383 0138

0384 0138

0385 0138

0386 0138 j¥¥*%*% T2C CODE SLAVE *****x*

0387 0138

0388 0138 i2cint: ; I2C interrupt entry point
0389 0138 D2 03 setb i2c_busy ; semaphore on xmtdata buffer
0390 013A

0391 013A CO DO push psw ; save registers used in ISR
0392 013C CO EO push acc

0393 013E CO 00 push 0 ; RO no bank switching

0394 0140

0395 0140 C2 AC clr EI2 ; make I2C ISR interruptable
0396 0142 31 E9 acall clrint ; execute a reti

0397 0144

0398 0144 slave:

0399 0144 75 27 03 mov i2ctime, #3 ; set up I2C timeout watchdog 30 mS
0400 0147

0401 0147 75 98 9C mov I2CON, #BCARL+BCSTP+BCSTR+BCXA
; clear start status

0404 014A 30 9E FD jnb ATN,$
0405 014D 75 22 07 mov bitent, #7

wait for next data bit

0407 0150 31 €9 acall recvb2 ; get remainder of slave address
0408 0152 F5 24 mov adrrcvd,a
0409 0154 C2 EO clr a.0 ; mask r/w bit to check address

0410 0156 B4 88 3B cjne a,#IICADD,goidle ; idle again if not for us
0411 0159
0412 0159 20 20 1F jb rwflag, read ; test for read or write

0416 01sc j¥***%* T2C Receive Code *****x
0417 015C
0418 015C 78 04 mov r0,#rcvdat ; r0 points to data buffer

0419 015E 75 23 01 mov bytecnt, #MAXBYTES

0421 0161 rcvloop:

0422 0161 31 BF acall sendack ; acknowledge the address
0423 0163 31 C6 acall rcvbyte ; wait for the next data byte
0424 0165 30 9D OF jnb DRDY, exitwr ; end of frame

0425 0168 F6 mov @r0,a

0426 0169 08 inc r0

0427 016A D5 23 F4 djnz bytecnt,rcvloop

0428 016D

0429 016D ; no more room

0430 016D

0431 016D 31 BF acall sendack ; ack last byte

0432 016F 31 C6 acall rcvbyte ; get but discard next one
0433 0171 75 99 80 mov I2DAT, #80h ; send neg ack

0434 0174 30 9E FD jnb ATN, $; wait till gone

0435 0177 exitwr:

0436 0177

0437 0177 D2 01 setb recvd

0438 0179 80 13 sjmp msgend

0439 017B

0440 017B ;***%%* End of Receive Routine ******

0441 017B
0442 017B

1992 Aug 26 157

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

0443 017B
0444 017B
0445 017B
0446 017B
0447 017D
0448 0180
0449 0182
0450 0182
0451 0182
0452 0183
0453 0184
0454 0186
0455 0189
0456 018C
0457 018cC
0458 018E
0459 018E
0460 018E
0461 018E
0462 018E
0463 018E
0464 018E
0465 0191
0466 0194
0467 0194
0468 0194
0469 0194
0470 0194
0471 0197
0472 019a
0473 019A
0474 019cC
0475 019E
0476 01a0
0477 01A0
0478 01a2
0479 01a4
0480 01a6
0481 01A6
0482 01a7
0483 01a7
0484 01A7
0485 01a7
0486 01a7
0487 01A7
0488 01AA
0489 0laa
0490 01aa
0491 01AC
0492 01AD
0493 01BO
0494 01B3
0495 01B6
0496 01B9
0497 01BC
0498 01BD
0499 01BD
0500 01BD
0501 01BD
0502 01BD
0503 01BF
0504 01BF
0505 01BF
0506 01c2
0507 01cs5
0508 01ceé
0509 01ce

1992 Aug 26

78
75
31

30
20

75
75

DO
DO
Do
D2

D2
c2

75

75

22

s kK kK kK
;

read:
06
23 01
BF

txloop:

A7
00 03
23 F6

00

2 kK Kk kK
i

;******
msgend:
9E FD
9B BO

* %

I2C Transmit Code

mov r0, #xmtdat
mov bytecnt, #MAXBYTES
acall sendack

mov a, @r0

inc r0

acall xmitbyte

jb noack, exitrd
djnz bytecnt, txloop

exitrd: sjmp msgend

End of I2C transmit

Repeated start state

jnb ATN, $
jb STR, slave

; stop so enter idle mode

goidle:
27 00
98 F4

00
EO
DO

AC

02
03

FRHEK KKK

mov i2ctime, #0

*kkk

; r0 points to data buffer

acknowledge address

get next data byte
; bump buffer pointer
transmit the byte to the I2C
; if not acknowledged then exit

ok ok ok ok ok

KoKk K

; wait for stop or repeated start
; if repeat start do again

;i stop I2C timeout

mov I2CON, #BCSTP+BCXA+BCDR+BCARL+BIDLE

pop 0 H
pPOop acc
POD psw

setb EI2
setb sent_flag
clr i2c_busy

ret

General I2C routines

xmitbyte:

22 08

xmitbit:
99

9E FD
22 F7
98 A0
9E FD
99 20

rdack:
Cc6

sendack:

99 00
9E FD

rcvbyte:

mov bitcnt, #8

mov I2DAT,a

rl a

jnb ATN, $

djnz bitent,xmitbit
mov I2CON, #BCDR+BCXA
jnb ATN, $

mov flags, I2DAT

ret

acall rcvbyte

mov I2DAT, #0
jnb ATN, $
ret

restore state before I2C ISR

; flag to say data has been sent
; flag denotes exiting I2C routine

kK KKk

i transmit data in acc to I2C

; switch to rcv mode
; wait for ack
; save ack bit

receives data byte then sends ack
i I2C receive, data returned in acc

i I2C ack = data low and clock high

i I2C receive, data returned in acc

158

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus AN434
0510 01Cc6 75 22 08 mov bitcnt, #8

0511 01c9

0512 01C9 E4 recvb2: clr a

0513 01cA

0514 01lca 45 99 rbit: orl a,I2DAT

0515 0lcc 23 rl a

0516 01CD 30 9E FD jnb ATN, $

0517 01D0 30 9D 06 jnb DRDY, rbex ; exit if not a data bit
0518 01D3 D5 22 F4 djnz bitcnt,rbit

0519 01D6

0520 01D6 A2 9F mov c,RDAT ; get last bit - do not clear ATN
0521 01D8 33 ric a ; shift into byte

0522 01D9

0523 01D9 rbex:

0524 01D9 22 ret

0525 01DA

0526 01pA ; IIC timer interrupt service

0527 01pa timerI:

0528 01DA 75 A8 00 mov ienO, #0 ; break point address in ICE751
0529 01DD D2 DD setb CLRTI ; clear the interrupt
0530 01DF fixup:

0531 01DF 75 D8 00 mov I2CFG, #0 ; turn off I2C

0532 01E2 75 98 BC mov I2CON, #BCXA+BCDR+BCARL+BCSTR+BCSTP

0533 01E5 ; reset I2C flags

0534 01E5 31 E9 acall clrint

0535 01E7 01 5C ajmp reset ; restart program

0536 01E9

0537 01E9

0538 01E9 ;*x*x*x** call here to make code interruptible *****x¥

0539 01E9

0540 01E9 clrint:

0541 01E9 32 reti

0542 01EA

0543 01EA j***xx* ynused interrupts are vectored to here *xx*¥*x

0544 O1lEA badint:

0545 O0lEA 32 reti

0546 01EB
0547 01lEB
0001+ O1lEB

0002+ O01lEB
0003+ O01EC
0004+ O1ED
0005+ OlEE
0006+ O1lEF
0007+ O1FO0
0008+ O1F1
0009+ O01F2
0010+ O01F3
0011+ O01F4
0012+ O01F5
0013+ O01F6
0014+ O01F7
0015+ O01F8
0016+ O1F9
0017+ O1FA
0018+ O01FB

0019+ O01FB
0020+ O01FC
0021+ O01FD
0022+ O1FE
0023+ O1FF

0024+ 0200
0025+ 0201
0026+ 0202
0027+ 0203
0028+ 0204
0029+ 0205

1992 Aug 26

#include attable.h

unshift

; scan code

.byte 0 ;0

.byte 0 ;1 - 9
.byte 0 ;2 - £7
.byte 0 ; 3 - £5
.byte 0 ;4 - £3
.byte 0 ; 5 - f1
.byte 0 ; 6 — f2
.byte 0 ;7 - f£2
.byte 0 ; 8 —
.byte 0 ;9 - fl10
.byte 0 ; a - f8
.byte 0 ; b - f6
.byte 0 ; c - f4
.byte 09h ; d - tab
.byte ‘' ;e -
.byte 0 ; £ -
.byte 0 ; 10
.byte 0 ; 11 - left shift
.byte 0 ;12
.byte 0 ;13
.byte 0 ; 14
.byte 'q’ ;i 15
.byte "1’ ; 16
.byte 0 ;i 17
.byte 0 ; 18
.byte 0 ;19
.byte ‘z’ ;i la

159

Philips Semiconductors

Application note

Connecting a PC keyboard to the I2C-bus

AN434

0030+
0031+
0032+
0033+
0034+
0035+
0036+
0037+
0038+
0039+
0040+
0041+
0042+
0043+
0044+
0045+
0046+
0047+
0048+
0049+
0050+
0051+
0052+
0053+
0054+
0055+
0056+
0057+
0058+
0059+
0060+
0061+
0062+
0063+
0064+
0065+
0066+
0067+
0068+
0069+
0070+
0071+
0072+
0073+
0074+
0075+
0076+
0077+
0078+
0079+
0080+
0081+
0082+
0083+
0084+
0085+
0086+
0087+
0088+
0089+
0090+
0091+
0092+
0093+
0094+
0095+
0096+

0206
0207
0208
0209
020A
020B
020B
020C
020D
020E
020F
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
021a
021B
021B
021cC
021D
021E
021F
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
022A
022B
022B
022¢C
022D
022E
022F
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
023A
023B
023B
023C
023D
023E
023F
0240
0241
0242
0243
0244

1992 Aug 26

.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

Y
‘a’
W’
X

-
iy
‘qr
fer
4

‘nt

~ O O

o O oo

i 1b

1lc
1d
le

; 1f

160

Philips Semiconductors

Application note

Connecting a PC keyboard to the I2C-bus

AN434

0097+
0098+
0099+
0100+
0101+
0102+
0103+
0104+
0105+
0106+
0107+
0108+
0109+
0110+
0111+
0112+
0113+
0114+
0115+
0116+
0117+
0118+
0119+
0120+
0121+
0122+
0123+
0124+
0125+
0126+
0127+
0128+
0129+
0130+
0131+
0132+
0133+
0134+
0135+
0136+
0137+
0138+
0139+
0140+
0141+
0142+
0143+
0144+
0145+
0146+
0147+
0148+
0149+
0150+
0151+
0152+
0153+
0154+
0155+
0156+
0157+
0158+
0159+
0160+
0161+
0162+
0163+

0245
0246
0247
0248
0249
024A
024B
024B
024cC
024D
024E
024F
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
025A
025B
025B
025C
025D
025E
025F
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
026A
026B
026B
026B
026C
026D
026E
026F
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
027A
027B
027B
027C
027D
027E
027F
0280
0281
0282

1992 Aug 26

0D
5D
00

00
00

shift:

.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

13
BE

92
0

CO0OO0O0O0O0DO0O0OMOOOOOO

SO0 O0ONOOORrO
~

~ O

Tk

o oo

eNeoNoNeNoNeoNoNeNolNoNoloNe o]

i

o

O QAQODH® WOt WwhE O

scan code

161

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

0164+
0165+
0166+
0167+
0168+
0169+
0170+
0171+
0172+
0173+
0174+
0175+
0176+
0177+
0178+
0179+
0180+
0181+
0182+
0183+
0184+
0185+
0186+
0187+
0188+
0189+
0190+
0191+
0192+
0193+
0194+
0195+
0196+
0197+
0198+
0199+
0200+
0201+
0202+
0203+
0204+
0205+
0206+
0207+
0208+
0209+
0210+
0211+
0212+
0213+
0214+
0215+
0216+
0217+
0218+
0219+
0220+
0221+
0222+
0223+
0224+
0225+
0226+
0227+
0228+
0229+
0230+

0283
0284
0285
0286
0287
0288
0289
028A
028B
028B
028C
028D
028E
028F
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
029A
029B
029B
029cC
029D
029E
029F
02A0
02a1
02a2
02A3
0224
02A5
02a6
02Aa7
02Aa8
02a9
02AA
02AB
02AB
02aC
02AD
02AE
02AF
02B0
02B1
02B2
02B3
02B4
02B5
02B6
02B7
02B8
02B9
02BA
02BB
02BB
02BC
02BD
02BE
02BF
02co
02c1

1992 Aug 26

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte

0

o]

iy
i
7\
W
@

o
ix
D
‘g
5
e

~ O o

e
i
ipe
‘R

s

N
‘B
TR
‘g
iy

ra

M
g
e
g

Pk

o
K
i
‘o
"y
S

0

; 18
;19
;i la
; 1b
i lc
; 1d
; le
; 1f

162

Philips Semiconductors

Application note

Connecting a PC keyboard to the 12C-bus

AN434

0231+
0232+
0233+
0234+
0235+
0236+
0237+
0238+
0239+
0240+
0241+
0242+
0243+
0244+
0245+
0246+
0247+
0248+
0249+
0250+
0251+
0252+
0253+
0254+
0255+
0256+
0257+
0258+
0259+
0260+
0261+
0262+
0263+
0264+
0265+
0266+
0267+
0268+
0269+
0270+
0271+
0272+
0273+
0274+
0275+
0548

0549

tasm: Number of errors

02C2
02C3
02C4
02C5
02C6
02C7
02Ccs8
02c9
02ca
02CB
02CB
02cc
02CD
02CE
02CF
02D0
02D1
02D2
02D3
02D4
02D5
02D6
02D7
02D8
02D9
02DA
02DB
02DB
02DpC
02DD
02DE
02DF
02E0
02E1
02E2
02E3
02E4
02E5
02E6
02E7
02E8
02E9
02EA
02EB
02EB
02EB
02EB

1992 Aug 26

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

.end
=0

~ R OO0Oo
w

~ O
— —

o o

SO ~ OO0 WO OO0 00O

o O o -~

0

o
5
e

163

Philips Semiconductors

12C routines for 8XC528

Application note

AN438

I

Philips Semiconductors Application Note EIE/AN90015

Summary

This application note presents a set of software routines to drive the
12C interface in 8xC528 type of microcontrollers. A description of the
12C interface is given. Examples show how to use these routines in
PL/M-51, C and assembly source code.

1.0 INTRODUCTION

This application note describes the 12C interface of the 8xC528
microcontroller and gives a set of routines in application programs to
drive this interface.

Chapter 2.0 gives a hardware description of the bit level I2C. It gives
an overview of what functions are done in hardware by the interface
and the functions that should be implemented by software. The
registers described are accessible with software and control the 12C
interface.

Chapter 3.0 gives a description of the routines that may be used by
the application program. The routines are written in such a way that
the I2C interface becomes transparent to the user. the slave
program is described in more detail, because this routine may be
adapted by the user for his specific application.

Chapter 4.0 gives simple example programs that show how to use
the routines in assemble, PL/M and C application programs.

References:

9398 358 10011
Data handbook IC20
ETV/AN89004

~ The 12C-bus specification
— 80C51-based 8-bit Microcontroliers
— PLMS51 I2C Software Interface IC51

2.0 THE I2C INTERFACE

2.1 Characteristics of I2C Interface

The Block diagram of the bit-level I2C interface is shown on

page 165. P1.6/SCL and P1.7/SDA are the serial I/O pins. These
two pins meet the 12C specification concerning the input levels and
output drive capability. Consequently, these pins have an open drain
configuration. All four modes of the I12C bus can be used:

— Master transmitter
— Master receiver
- Slave transmitter

— Slave receiver

March 1991

164

The advantages of using the bit-level 12C hardware compared with a
full software implementation are:

— Higher bit rate

~ No critical software timing requirements

— Less software overhead

- More reliable data transfer

The bit-level I2C hardware can perform the following functions:

— Filtering the incoming serial data and clock signals. Glitches
shorter than 4 XTAL periods are rejected.

— Recognition of a START or STOP condition.

— Generating an interrupt request after reception of a START
condition.

- Setting the Bus Busy flag when a START condition is detected.
— Clearing the Bus Busy flag when a STOP condition is detected.
— Recognition of a serial clock pulse on the SCL line.

— Latching the serial data bit on the SDA line at every rising edge on
the SCL line.

— Stretching the LOW period of the serial clock SCL to synchronizer
with external master devices.

— Setting the Read Bit Finished (RBF) or Write Bit Finished (WBF)
flag is an error free bit transfer has occurred.

— Setting a Clock LOW-to-HIGH (CLH) flag when a leading edge is
detected on the SCL line.

— Generation of serial clock pulse on SCL in master mode.

The following functions must be done with software:

— Handling the I12C interrupt caused by a detected START condition.
- Conversion of serial to parallel data when receiving.

— Conversion of parallel to serial data when transmitting.

— Comparing received slave address with own slave address.

— Interpretation of acknowledge information.

- Guarding the I2C status if the RBF and WBF flags indicate a not
regular bit transfer.

— Generating START/STOP conditions when in master mode.

— Handling bus arbitration when in master mode.

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

Special Function Registers

March 1991

165

S1INT 1
(DAh) St X X X X X X X RW
7 6 5 4 3 2 1 [
Output SFR Latch Input
SBT |spi| o | o o o] o] o ofR P17 P17
©sh) fspo| x X X X X X x | W
Bit Address DF DE DD DC DB DA D9 D8 Q P1.7/9DA
SDO
$1SCS | spi | sci | cv | BB | RBF | WBF | STR | ENS | R
2) 2 1
(8h) | spo | sco| ctH | X X X | stTR{ENS | W FILTER
- |—> D
1) Software can only clear this bit
2) This bit is read with read-modify—write operation sDI
X =Undefined (R) or don't care (W) CLK
R = Read access
W = Write access
—/-FSCL
Output SFR Latch Input
P1.6 P16
Q
SDO
P1.6/SCL
»1s DIS
_[s AUTOCL sol I
FILTER
s R FSCL |
START/STOP STRETCH
condition BB
detection logic
—L.]
RW
S1BIT
FscL —¥ s al— Q| ENABLE > STRETCH > RBF R/W—»| START
Read/Writ bit S1BIT Auto-clock
CLR ENS STR Stretch Logic finished logic generator [¥ AUTOCL
RW — R an [* pis WBF ‘_J_l
S1BIT
SU00411
Figure 1.

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

2.2 Control and Status Registers
Control of the I12C bus hardware is done via 3 Special Function
Registers:

S1INT
This register contains the serial interrupt flag S.

S1BIT
For read, this register contains the received bit SDI.
For write, this register contains bit SDO to be transmitted.

S18CS
For read, this register contains status information.
For write, this register is used as control register.

2.2.1 S1INT: I2C Interrupt Register
— S1INT.7 is the Serial Interrupt request flag (Sl).

If the serial I/O is enabled (ENS = 1), then a START condition will
be detected and the Sl flag is set on the falling edge of the filtered
SCL signal.

Provided that EA (global enable) and ES1 (enable I2C interrupt)
are set (in the interrupt enable IE register), S| generates an
interrupt that will start the slave address receive routine.

Sl is cleared by accessing the S1BIT register or by writing ‘00H’ to
S1INT. Sl cannot be set by software.

After reception of a START condition, the LOW period of the SCL
pulse is stretched, suspending serial transfer to allow the software
to take appropriate action. This clock stretching is ended by
accessing the S1BIT register.

222 S1BIT: Single Bit Data Register

- S1BIT.7 contains two physical latches: the Serial Data Output
(SDO) latch for a write operation, and the filtered Serial Data Input
(SDI) latch for a read operation. SDI data is latched on the rising
edge of the filtered SCL pulse. S1BIT.7 accesses the same
physical latches as S1SCS.7, but S1BIT.7 is not bit addressable.

Reading or writing S1BIT register starts the next additional
actions:
- SI, CLH, RBF and WBF flags are cleared.
— Stretching the LOW period of the SCL clock is finished.
- Auto-clock pulse is started if enabled.

The auto-lock is an active HIGH SCL pulse that starts 28 Xtal
periods after an access to S1BIT. SCL remains high for 100 Xtal
periods. If the SCL line is kept LOW by any device that wants to
hold up the bus transfer, the auto-clock counter still runs for 20
Xtal periods to try to make SCL high and then go into a wait-state.
This will result in a minimum SCL HIGH time of 80 Xtal periods
(5us at fxia = 16 MHz).

The auto-clock signal will be inhibited if the SCO flag in the
S18CS register is set to ‘1°. SCL pulses must then be generated
by software. In this situation, access to S1BIT may be used to
clear the S|, CLH, RBF and WBF flags.

A quick check on a successful bit transfer from/to SDO/SDI is
carried out be testing only the RBF or WBF flag (see 2.2.3).

223 S1SCS: Control and Status Register

— S1SCS.7 represents two physical latches, the Serial Data Output
(SDO) latch for write operations and the Serial Data Input (SDI)
latch for read operations. S1SCS.7 accesses the same physical
latches as S1BIT.7, but S1SCS.7 is bit addressable. However, a

March 1991

read or write operation of S1SCS.7 does not start an auto-lock
pulse, with not finish clock stretching, and will not clear flags.

S1SCS.6 represents two physical latches, the Serial Clock Output
(SCO) latch for write operations and the Serial Clock Input (SCI)
latch for read operations. The output of SCO is “OR-ed” with the
auto-clock pulse. If SCO = ‘1’ the auto-clock generation is
disabled and its output is LOW. Internal clock stretching logic and
external devices can then pull the SCL line LOW.

If the auto-clock is not used, the SCL line has to be controlled by
setting SCO = ‘1’, waiting for CLH to become ‘1" and setting SCO
= ‘0’ after the specified SCL HIGH time. Data access should be
done via S1SCS.7.

S18CS.5 is the serial Clock LOW-to-HIGH transition flag (CLH).
This flag is set by a rising edge of the filtered serial clock. CLH =
‘1" indicates that no devices are stretching SCL LOW, and since
the last CLH reset, a new valid data bit has been latched in SDI.

CLH can be cleared by writing ‘0’ to S1SCS.5 or by a read or write
operation to the S1BIT register. Clearing CLH also clears RBF
and WBF. Writing a ‘1’ to S1SCS.5 will not affect CLH.

S$1SCS.4 is the Bus Busy flag (BB). BB is set or cleared by
hardware only. If set, it indicates that a START condition has been
detected on the I2C bus. A STOP condition clears the BB flag.

S1SCS.3 is the Read Bit Finished flag (RBF). If RBF = 1, it
indicates that a serial bit has been received and latched into SDI
successfully. If during a bit transfer RBF is ‘0, the cause is
indicated as follows:

SCl="1

and

CLH="1 The SCL pulse is not finished and still HIGH.

CLH=‘0 A bus device is delaying the transfer by
stretching the LOW level on the SCL line.

BB =0 A STOP-condition has been detected during
the bit transfer. This should be considered as
a bus-error.

Si=*1 A START-condition has been detected during

the bit transfer. This should be considered as
a bus-error.

RBF can be cleared by clearing CLH or by a read or write
operation to the S1BIT register.

S1SCS.2 is the Write Bit Finished flag (WBF). If set, it indicates
that a serial bitin SDO has been transmitted successfully. If
during bit transfer WBF is ‘0’, the following conditions may be the
cause:

SCl=*1

and

CLH="1 The SCL pulse is not finished and still HIGH.

CLH="0’ A bus device is delaying the transfer by
stretching the LOW level on the SCL line.

BB="0 A STOP-condition has been detected during
the bit transfer. This should be considered as
a bus-error.

Si=1 A START-condition has been detected during

the bit transfer. This should be considered as
a bus-error.

WBF can be cleared by clearing CLH or access to the S1BIT
register.

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

- $1SCS.1 is the STRetch control flag (STR). STR can be set or
cleared by software only. Setting STR enables the stretching of
SCL LOW periods. Stretching will occur after a falling edge on the
filtered serial clock. This allows synchronization with the SCL
clock signal of an external master device.

If STR s cleared, no stretching of the SCL LOW period will occur
after the transfer of a serial bit.

The LOW level on the SCL line is also stretched after a START
condition is received, regardless of the STR contents. The
stretching of the SCL LOW period is finished by a read or write
operation of the S1BIT register.

- $1SCS.0 is the ENable Serial I/O flag (ENS).
ENS can be set or cleared by software only.

ENS = ‘0’ disables the serial I/O. The I/O signals P1.6/SCL and
P1.7/SDA are determined by the port latches of P1.6 and P1.7
(open drain). If P1.6 and P1.7 are connected to an 12C bus, then
the flags SDI, SCI, CLH; and BB still monitor the 12C bus status,
but will not influence the 1/O lines, nor will they request an
interrupt.

ENS = *1’ enables the START detection and clock stretching logic.
Note that the P1.6 and P1.7 latches and the SDO and SCO
control flags must be set to ‘1’ before ENS is set to avoid SCL
and/or SDA to pull the lines LOW.

CONDITIONS: ENS=1 AND STR=1
READ/WRITE S1BIT READ/WRITE S1BIT
(CLEARS SI) (CLEARS CLH, RBF, WBF)
SDI0 SCI-0 (STARTS AUTO-CLOCK) (STARTS AUTO-CLOCK) SCI-1 SDI-1
\
SDA X £ X . R
SCL X 3 /- \ 7
LOW PERIOD LOW PERIOD
} STRETCHED STRETCHED
BB sl CLH RBF OR BB
SET SET SET WBF CLEARED
SET
START ONE BIT STOP
CONDITION TRANSFER NEXT BIT TRANSFERS CONDITION
SU00412
Figure 2. Example of a Serial Transfer
March 1991 167

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

3.0 I12C ROUTINES

3.1 Introduction

A set of routines is written for the 12C interface that supports
multi-master and slave operation. The routines are placed in a
library 12C_DR.LIB. If I2C_DR.LIB is linked to an application
program, only the needed object modules are linked in the output
file.

The routines can be used as device driver for PL/M-51, C and
8051-assembly code. By using these routines the bit-level 12C
interface is fully transparent for the user.

The routines use the following 8xC528 resources:

- Exclusive use of Register_Bank_1. Only R7 of this register bank
contains static data (Own Slave Address). R0..R6 may be used by
the application program when the I12C routine is finished.

— 7 bytes DATA used for parameter passing.

— 1 byte Bit-Addressable DATA for status flags.

When using routines from this library DPH, DPL, PSW (except CY)
and B are not altered.

An n-bytes data buffer is used as destination or source buffer for the
bytes to be received/transmitted and reside in DATA or IDATA
memory space.

The code is written to generate the highest transfer rate on the 12C
bus. At fxia = 16MHz this will result in a bit rate of 87.5kbit/sec.

The following software tools from BSO/Tasking are used for program
development:

— OM4142 Cross Assembler 8051 for DOS: V3.0b

-~ OM4144 PL/M 8051 Compiler for DOS: V3.0a

— OM4136 C8051 Compiler for DOS: V1.1a

— OM4129 XRAY51 debugger: V1.4c

3.2 Functional Description

When using these routines in a PL/M application program, they must
be declared EXTERNAL. In this declaration the user can specify the
type returned by each procedure. All procedures (except Init_IIC
and Dis_lIC) can return a BIT or BYTE, depending on the chosen
EXTERNAL declaration. The BIT or BYTE returned is ‘0’ if the 12C
was successful. If a BYTE is returned, the following check bits are
available for the user:

BYTE.O An I12C error has been detected.

BYTE.1 No ACK received.

BYTE.2 Arbitration lost.

BYTE.3 Time out error. This may be caused by an
external device pulling SCL LOW.

BYTE.4 A bus error has occurred. This may be a
spurious START/STOP during a bit transfer.

BYTE.5 No access to 12C bus.

BYTE.6 0

BYTE.7 0

Note that typed procedures must be called using an expression. If
the result of an [2C procedure is to be ignored, a dummy assignment
must be done for a typed procedure. The exampies in the following
section assume that the procedures are called from a PL/M
program. Examples will be given later how to use these routines with
C and assembly application programs.

March 1991

321 InitliC

Declaration
Init_IIC:
PROCEDURE (Own_Slave_Address, Slave_Sub_Address)
EXTERNAL;
DECLARE (Own_Slave_Address, Slave_Sub_Address) BYTE;
END;

Description

Init_IIC must be called after RESET, before any procedure is called.
The I2C interface and I2C interrupt will be enabled. The global
enable interrupt flag, however, will not be affected. This should be
done afterwards. Own_Slave_Address is passed to Init_IIC for use
as slave. Slave_Sub_Address is the pointer to a DATA buffer that is
used for data transfer in slave mode. When used as master in a
single master system, these parameters are not used.

Example
CALL Init_IIC (54h,.Slave_Data_Buffer);
ENABLE; /* Enable Interrupts; EA=1*/

3.22 Dis_liC

Declaration
Dis_lIC:
PROCEDURE EXTERNAL;

Description

Dis_IIC will disable the I2C-interface and the 12C-interrupt. The 12C
interface will still monitor the bus, but will not influence the SDA and
SCL lines.

Example
CALL Dis_IIC;

3.23 lIC_Test_Device

Declaration

IC_Test_Device:
PROCEDURE (Slave_Address) [BITIBYTE] EXTERNAL;
DECLARE (Slave_Address) BYTE;
END;

Description
1IC_Test_Device just sends the slave address to the 12C bus. It can
be used to check the presence of a device on the I12C bus.

12C Protocol

S-SIVW-A-P : Device is present, lIC_Error=0
S-SIvVW-N-P : Device is not present, IIC_Error=1
Example

DECLARE IIC_Error BIT;
IC_Error=IIC_Test_Device(8Ch);
IF (IIC_Error) THEN

“Device not acknowledging on slave address”
ELSE

“Device acknowledges on slave address”

Philips Semiconductors

Application note

I2C routines for 8XC528 AN438
3.24 lIC_Write 32,6 lIC_Write_Sub_SWinc
Declaration Declaration
1IC_Write: IIC_Write_Sub_SWinc:
PROCEDURE (Slave_Address, Count, Source_Ptr) PROCEDURE (Slave_Address, Count, Source_Ptr,
[BITIBYTE] EXTERNAL; Sub_Address) [BITIBYTE] EXTERNAL;

DECLARE (Slave_Address, Count, Source_Ptr) BYTE;
END;

Description
1IC_Write is the most basic procedure to write a message to a slave
device.

12C Protocol
L =Count
D1[0..L-1] BASED by Source_Ptr

S-SIVW-A-D1[0]-A....A-D1[L-1]-A-P

Example
DECLARE Data_Buffer(4) BYTE;

CALL IIC_Write(02Ch, LENGTH(Data_Buffer),.Data_Buffer);

3.25 1lIC_Write_Sub

Declaration
1IC_Write_Sub:
PROCEDURE (Slave_Address, Count, Source_Ptr,
Sub_Address) [BITIBYTE] EXTERNAL;
DECLARE (Slave_Address, Count, Source_Ptr, Sub_Address)
BYTE;
END;

Description
IIC_Write_Sub writes a message preceded by a sub-address to a
slave device.

12C Protocol

L =Count

Sub =Sub_Address
D1[0..L~1] BASED by Source_Ptr

S-SIVW-A-Sub-A-D1[0}-A-D1[1]-A....A-D1[L-1}-A-P

Example
DECLARE Data_Buffer(8) BYTE;

CALL lIC_Write_Sub (48h,LENGTH(Data_Buffer),.Data_Buffer,2);

March 1991

169

DECLARE (Slave_Address, Count, Source_Ptr, Sub_Address)
BYTE;

END;
Description
Some I2C devices addressed with a sub-address do not
automatically increment the sub-address after reception of each
byte. IIC_Write_Sub_SWInc can be used for such devices the same
way as IIC_Write_Sub is used. [IC_Write_Sub_SWiInc splits up the
message in smaller messages and increments the sub-address
itself.

12C Protocol

L =Count

Sub =Sub_Address
D1{0..L—-1] BASED by Source_Ptr

S-SIvW-A- (Sub+0) — A-D1[0] — A-P

S-SIVW-A- (Sub+1) — A-D1[1] — A-P

S-SIVW-A- (Sub+L1)-A-D1[L-1}-A-P

Example

DECLARE Data_Buffer(6) BYTE;

CALL lIC_Write_Sub_SWInc(80h,LENGTH
(Data_Buffer),.Data_Buffer,2);

3.2.7 lIC_Write_Memory

Declaration
1IC_Write_Memory:
PROCEDURE (Slave_Address, Count, Source_Ptr,
Sub_Address) [BITIBYTE] EXTERNAL;
DECLARE (Slave_Address, Count, Source_Ptr, Sub_Address)
BYTE;
END;

Description

12C Non-Volatile Memory devices (such as PCF8582) need an
additional delay after writing a byte to it. 1IC_Write_Memory can be
used to write to such devices the same way [IC_Write_Sub is used.
1IC_Write_Memory splits up the message in smaller messages and
increments the sub-address itself. After transmission of each
message a delay of 40 milliseconds (fxia = 16 MHz) is inserted.

12C Protocol

L =Count

Sub =Sub_Address

D1[0..L-1] BASED by Source_Ptr

S-SIVW-A- (Sub+0) — A-D1[0] — A-P
Delay 40ms

S-SIVW-A- (Sub+1) — A-D1[1] - A-P
Delay 40ms

S-SIVW-A- (Sub+L—1)-A-D1[L-1]-A-P
Delay 40ms

Example

DECLARE Data_Buffer(10) BYTE;
CALL 1IC_Write_Memory(OAOh,LENGTH
(Data_Buffer),.Data_Buffer,0FOh);

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

3.2.8 lIC_Write_Sub_Write

Declaration
1IC_Write_Sub_Write:
PROCEDURE (Slave_Address, Counti, Source_Ptr1,
Sub_Address, Count2, Source_Ptr2)
[BITIBYTE] EXTERNAL;
DECLARE (Slave_Address, Count1, Source_Ptr1,
Sub_Address, Count2, Source_Ptr2) BYTE;
END;

Description

1IC_Write_Sub_Write writes 2 data blocks preceded by a
sub-address in one message to a slave device. This procedure can
be used for devices that need an extended addressing method,
without the need to put all data into one large buffer. Such a device
is the ECCT (I2C controlled teletext device; see example).

12C Protocol

L =Count1
M =Count2
Sub =Sub_Address

D1[0..L-1]
D2[0..M-1]

BASED by Source_Ptr1
BASED by Source_Ptr2

S-SIVW-A-Sub-A-D1[0]-A-D1[1]-A-....
-A-D1[L-1]-A-D2[0]-A-D2[1]-A-....
-A-D2[M-1]-A-P
Example
PROCEDURE Write_CCT_Memory
(Chapter, Row, Column, Data_Buf, Data_Count);
DECLARE (Chapter, Row, Column, Data_Buf, Data_Count) BYTE;

’”
The extended address (CCT-Cursor) is formed by Chapter, Row
and Column. These three bytes are written after the sub-address
(=8) followed by the actual data that will be stored relative to the
extended address.

*/

CALL IIC_Write_Sub_Write (22h, 3, .Chapter, 8, Data_Buf,

Data_Count);
END Write_CCT_Memory;

March 1991

170

3.29 [lIC_Write_Sub_Read

Declaration
1IC_Write_Sub_Read:
PROCEDURE (Slave_Address, Count1, Source_Ptr1,
Sub_Address, Count2, Dest_Ptr2)
[BITIBYTE] EXTERNAL;
DECLARE (Slave_Address, Count1, Source_Ptr1,
Sub_Address, Count2, Dest_Ptr2) BYTE;
END;

Description

1IC_Write_Sub_Read writes a data block preceded by a
sub-address, generates an I2C restart condition, and reads a data
block. This procedure can be used for devices that need an
extended addressing method. Such a device is the ECCT.

12C Protocol

L =Count1

M =Count2

Sub =Sub_Address
D1[0..L~1] BASED by Source_Ptr1
D2[0..M-1] BASED by Source_Ptr2

S-SIvW-A-Sub-A-D1[0]-A-D1[1]-A-....
-A-D1[L-1]-A-S-SIVR-A-D2[0]-A-D2[1]-A-....
-A-D2[M-1}-N-P
Example -
PROCEDURE Read_CCT_Memory
(Chapter, Row, Column, Data_Buf, Data_Count);
DECLARE (Chapter, Row, Column, Data_Buf, Data_Count) BYTE;

”
The extended address (CCT-Cursor) is formed by Chapter, Row
and Column. These three bytes are written after the sub-address
(8). After that the actual data will be read relative to the extended
address.

*/

CALL lIC_Write_Sub_Write (22h, 3, .Chapter, 8, Data_Buf,
Data_Count);
END Read_CCT_Memory,

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

3.2.10 lIC_Write_Com_Write

Declaration
1IIC_Write_Com_Write:
PROCEDURE (Slave_Address, Count1, Source_Ptr1, Count2,
Source_Ptr2) [BITIBYTE] EXTERNAL;
DECLARE (Slave_Address, Count1, Source_Ptr1, Count2,
Source_Ptr2) BYTE;
END;

Description

1IC_Write_Com_Write writes two data blocks from different data
buffers in one message to a slave receiver. This procedure can be
used for devices where the message consists of 2 different data
blocks. Such devices are, for instance, LCD-drivers, where the first
part of the message consists of addressing and control information,
and the second part is the data string to be displayed.

12C Protocol

L =Count1
M =Count2
D1[0..L~1] BASED by Source_Ptr1

D2[0..M-1] BASED by Source_Ptr2

S-SIVW-A-D1[0]-A-D1[1]-A-....
-A-D1[L-1]-A-D2[0]-A-D2[1]-A-....
-A-D2[M-1]-A-P

Example

DECLARE Control_Buffer(2) BYTE;

DECLARE Data_Buffer(20) BYTE;

CALL lIC_Write_Com_Write(74h, LENGTH(Control_Buffer),

.Control_Buffer, LENGTH(Data_Buffer), .Data_Buffer);

‘March 1991

171

3.2.11 1IC_Write_Rep_Write

Declaration
1IC_Write_Rep_Write:
PROCEDURE (Slave_Address1, Count1, Source_Ptr1,
Slave_Address2, Count2, Source_Ptr2)
[BITIBYTE] EXTERNAL;
DECLARE (Slave_Address1, Count1, Source_Ptr1,
Slave_Address2, Count2, Source_Ptr2) BYTE;
END;

Description

Two data strings are sent to separate slave devices, separated with
arepeat START condition. This has the advantage that the bus does
not have to be released with a STOP condition before the transfer
from the second slave.

12C Protocol

L =Counti

M =Count2

Sivw1 =Slave_Address1
SIvW2 =Slave_Address2
D1[0..L-1] BASED by Source_Ptr1
D2[0..M-1] BASED by Source_Ptr2

S-SIVW-A-D1[0}-A-D1[1]-....
-A-D1[L-1]-A-S-SIVWW-A-D2[0}-A-D2[1}-....
-A-D2[M-1]-A-P

Example

DECLARE Data_Buffer_1(10) BYTE;

DECLARE Data_Buffer_2(4) BYTE;

CALL IC_Write_Rep_Write (48h, LENGTH(Data_Buffer_1),

.Data_Buffer_1, 50h, LENGTH(Data_Buffer_2), .Data_Buffer_2);

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

3.2.12 lIC_Write_Rep_Read

Declaration
IC_Write_Rep_Read:
PROCEDURE (Slave_Address1, Counti, Source_Ptr1,
Slave_Address2, Count2, Dest_Ptr2)
[BITIBYTE] EXTERNAL;
DECLARE (Slave_Address1, Count1, Source_Ptr1,
Slave_Address2, Count2, Dest_Ptr2) BYTE;
END;
Description
A data string is sent and received to/from two separate slave
devices, separated with a repeat START condition. This has the
advantage that the bus does not have to be released with a STOP
condition before the transfer from the second slave.

12C Protocol

L =Count1

M =Count2

Sivwi1 =Slave_Address1
Sivw2 =Slave_Address2
D1[0..L-1] BASED by Source_Ptr1
D2[0..M-1] BASED by Dest_Ptr2

S-SIvW-A-D1[0]-A-D1[1]-....
-A-D1[L-1]-A-S-SIvR-A-D2[0]-A-D2[1]-....
-A-D2[M-1]-N-P

Example

DECLARE Data_Buffer_1(10) BYTE;

DECLARE Data_Buffer_2(4) BYTE;

CALL IIC_Write_Rep_Read (48h, LENGTH(Data_Buffer_1),

.Data_Buffer_1, 57h, LENGTH(Data_Buffer_2), .Data_Buffer_2);

3.2.13 IIC_Read

Declaration
IC_Read:
PROCEDURE (Slave_Address, Count, Dest_Ptr)
[BITIBYTE] EXTERNAL;
DECLARE (Slave_Address, Count, Dest_Ptr) BYTE;
END;

Description
IIC_Read is the most basic procedure to read a message from a
slave device.

12C Protocol
M =Count
D2[0..M~1] BASED by Dest_Ptr

S-SIvR-A-D2[0]-A-D2[1]-A.....A-D2[M-1]-N-P

Example
DECLARE Data_Buffer(4) BYTE;

CALL IIC_Read (0B5, LENGTH(Data_Buffer), .Data_Buffer);

March 1991

172

3.2.14 IIC_Read_Status

Declaration
IC_Read_Status:
PROCEDURE (Slave_Address, Dest_Ptr)
[BITIBYTE] EXTERNAL;
DECLARE (Slave_Address, Dest_Ptr) BYTE;
END;

Description

Several I2C devices can send a one byte status-word via the bus.
IC_Read_Status can be used for this purpose. IIC_Read_Status
works the same way as IIC_Read but the user does not have to
pass a count parameter.

12C Protocol
Status BASED by Dest_Ptr

S-SIvR-A-Status-N-P

Example
DECLARE Status_Byte BYTE;

CALL IIC_Read_Status (84h, .Status_Byte);

3.2.15 IIC_Read_Sub

Declaration
IIC_Read_Sub:
PROCEDURE (Slave_Address, Count, Dest_Ptr, Sub_Address)
[BITIBYTE] EXTERNAL;
DECLARE (Slave_Address, Count, Dest_Ptr, Sub_Address)
BYTE;
END;

Description

IIC_Read_Sub reads a message from a slave device, preceded by a
write of the sub-address. Between writing the sub-address and
reading the message, an 12C restart condition is generated without
releasing the bus. This prevents other masters from accessing the
slave device in between and overwriting the sub-address.

12C Protocol

M =Count

Sub =Sub_Address
D2[0..M-1] BASED by Dest_Ptr

S-SIvW-A-Sub-A-S-SIvR-D2[0]-A-D2[1]-A.....A-D2[M-1]-N-P
Example
DECLARE Data_Buffer(5) BYTE;

CALL IIC_Read_Sub (0A3h, LENGTH(Data_Buffer), .Data_Buffer, 2);

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

3.2.16 |IC_Read_Rep_Read

Declaration
1IIC_Read_Rep_Read:
PROCEDURE (Slave_Address1, Countt, Dest_Ptr1,
Slave_Address2, Count2, Dest_Ptr2)
[BITIBYTE] EXTERNAL;
DECLARE (Slave_Address1, Count1, Dest_Ptr1,
Slave_Address2, Count2, Dest_Ptr2) BYTE;
END;
Description
Two data strings are read from separate siave device, separated
with a repeat START condition. This has the advantage that the bus
does not have to be released with a STOP condition before the
transfer from the second slave.

12C Protocol

L =Count1

M =Count2

SivWi1 =Slave_Address1
Sivw2 =Slave_Address2
D1[0..L-1] BASED by Dest_Ptr1
D2[0..M-1] BASED by Dest_Ptr2

S-SWR-A-D1[0]-A-DA[1]-....
-A-D1[L-1]-N-S-SIVR-A-D2{0}-A-D2[1]-....
-A-D2[M-1]-N-P

Example

DECLARE Data_Buffer_1(10) BYTE;

DECLARE Data_Buffer_2(4) BYTE;

CALL IIC_Read_Rep_Read (49h, LENGTH(Data_Butffer_1),

.Data_Buffer_1, 51h,

LENGTH(Data_Buffer_2), .Data_Buffer_2);

March 1991

173

3.2.17 1IC_Read_Rep_Write

Declaration
IC_Read_Rep_Write:
PROCEDURE (Slave_Address1, Counti1, Dest_Ptr1,
Slave_Address2, Count2, Source_Ptr2)
[BITIBYTE] EXTERNAL;
DECLARE (Slave_Address1, Counti, Dest_Ptr1,
Slave_Address2, Count2, Source_Ptr2) BYTE;
END;

Description

A data string is received and sent from/to two separate siave
devices, separated with a repeat START condition. This has the
advantage that the bus does not have to be released with a STOP
condition before the transfer from the second slave.

12C Protocol

L =Count1

M =Count2

Sivw1 =Slave_Address1
Sivw2 =Slave_Address2
D1[0..L—1] BASED by Dest_Ptr1
D2[0..M-1] BASED by Source_Ptr2

S-SVR-A-D1[0}-A-DI[1]-...
“A-D1[L-1}-N-S-SIVW-A-D2[0]-A-D2[1]-.....
-A-D2[M-1-A-P

Example

DECLARE Data_Butfer_1(10) BYTE;

DECLARE Data_Buffer_2(4) BYTE;

CALL IIC_Read_Rep_Write(49h, LENGTH(Data_Buffer_1),

.Data_Buffer_1, 58h,

LENGTH(Data_Buffer_2), .Data_Buffer_2);

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

3.2.18 Slave Mode Routines
There are two ways for the 12C interface to enter the slave-mode:

— After an I2C interrupt the software must enter the slave-receiver
mode to receive the slave address. This address will then be
compared with its own address. If there is a match either
slave-transmitter or slave-receiver mode will be entered. If no
match occurs, the interrupted program will be continued.

— During transmission of a slave-address in master-mode,
arbitration is lost to another master. The interface must then
switch to slave-receiver mode to check if this other master wants
to address the 8xC528 interface.

The slave-mode protocol is very application dependent. In this note
the basic slave-receive and slave-transmit routines are given and
should be considered as examples. The user may for instance send
NO_ACK after receiving a number of bytes to signal to the
master-transmitter that a data buffer is full. A description of the code
will be given later.

Slave parameters are given with the Init_IIC procedure. The passed
parameters are the own-slave-address and a
source/destination-pointer to a data buffer.

The slave-routine will be suspended at the following conditions:

— Interrupts with higher priority. Slave-routine will be resumed again
after interrupt is handled.

— If a NO_ACKNOWLEDGE is received form a master-receiver.
— If a STOP condition is detected from a master transmitter.
Constraints for user software.

— The user must control the global enable (EA) bit.

— The user must control the priority level of the 12C interrupt. If the
slave routine is interrupted by a higher priority interrupt, the SCL
line will be stretched to postpone bus transfer until the higher
interrupt is finished.

3.3 The Slave Routine: SLAVE.ASM

The listing of the slave routine can be seen on page 175. The
routine is written in such a way that stretching of SCL is minimized.
Application code can be inserted in this routine and this will increase
stretching time.

The routine has 2 entry points.

Entry via MST_ENTRY happens when an arbitration error has
occurred when transmitting a slave address in master mode.

March 1991

174

Auto-clock generation will be disabled and SCL stretching enabled.
The byte will be continued to be received and can later be compared
with the own slave address.

The second entry point is via an interrupt when a START condition is
detected. At _PIPOA the context of the interrupted program is stored.
Next Auto-clock generation is disabled and SCL stretching enabled.
Reception of the slave address can now begin by calling
RCV_SL_BY. When the received slave-address is compared with
the own-slave-address the R/W-bit is ignored. If there is no match
between the 2 addresses, a negative ACK bit is sent and the slave
routine is left via EXIT. If there was a match the R/W bit is checked
to enter the slave-receiver or slave-transmitter mode.

The slave-transmitter mode starts at NXT_TRX. After getting the
byte from the data buffer via BUF_POINT and initializing the bit
counter BIT_CNT the transmission loop is entered. A bit is written
via access to S1BIT because this will automatically reset the CLH
and WBF status flags, and also SCL stretching. Now WBF must be
tested until the transmission is successful. When WBF becomes
true, SCL will be stretched again. When 8 bits are sent, the SDA line
is released and RBF is tested until the ACK bit is received. The ACK
bit is read by reading SDI instead of S1BIT to maintain SCL
stretching. If ACK was false, no more bytes have to be sent and the
routine is left. If another byte has to be transmitted, BUF_POINT is
updated and transmission will continue.

The slave-receiver mode starts at RCV_SLAVE. A byte is received
by calling RCV_SL_BY. This routine will clear the CY-flag when a
STOP condition has been received. This means that the master will
send no more bytes to this slave and the slave routine will be left.
When no STOP condition was detected, the received byte will be
stored @BUF_POINT and an ACK bit will be sent. After this, a new
byte can be received.

When calling RCV_SL_BY the bit counter BIT_CNT will be initialized
and the SCL stretching stopped by a dummy access to S1BIT. In the
receive loop both BB and RBF will be checked. When BB is cleared,
a STOP condition is detected and the routine will be left with CY=0.

The first 7 bits are received via S1BIT because this will release
stretching. The 8th bit is accessed via SDI because stretching must
be maintained.

If the slave routine is left via EXIT, the STR bit is cleared (to disable
stretching on SCL edges when the 8xC528 is not addressed as
slave) and a dummy access to S1BIT is done to finish current SCL
stretching. If the slave routine was entered via an interrupt the
previous context is restored.

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

TSW-ASM51 V3.0b Serial

PAGE 1

LocC OBJ

0053: 020000

REG END
REG END
REG END

0000: COEOQ
0002: CODO
0004: 75D008

0007: 43D842

000A: 1142

000C: A2EO

000E; 92D5
0010: 6F

March 1991

LINE

o W N

w o

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

46

47
48

#00052252 Slave interrupt routine

SOURCE

$TITLE(Slave interrupt routine)
$DEBUG
SNOLIST

;This routine handles I2C interrupts.

;8xC528 I2C interface enters in slave mode.

;After testing R/W bit, 8xC5328 will go in slave-transmit or
;slave-receive mode.

;Source or destination buffer for data uses pointer SLAVE_SUB_ADDRESS
;Slave routine will use register bank 01

;

R R R R R R R R R R TS S e s
i

;Interrupt entry point

CSEG AT 53H

LJMP __PIPOA ;Vector to interrupt handler
i

Lk k ok kkk ok ok kk kA kA k kR k ko k ok ok ok kk ok ok kA kA Kk k ok ok ok ko k ok k ok kK Kk k kK ko Kk KKk kKK
i

I2C_DRIVER SEGMENT CODE INBLOCK
RSEG I2C_DRIVER

PUBLIC MST_ENTRY
EXTRN DATA (SLAVE_SUB_ADDRESS)
EXTRN BIT(ARB_LOST)

BUF_POINT SET RO
OWN_SLAVE: SET R7

BIT_CNT SET R2

B R R R R R
i

__PIPOA:PUSH ACC ;Push CPU status on stack
PUSH PSW
MOV PSW, #08H ;Select registerbank 01

KKK K Kk KKK kKRR KKK KKK K KRR KKK KRR KK IR K KKK KKK KK AR KK KKK KKK KKK A KKK

;iCheck slave address

SRR KKK Kk A K KKK K Ak ok ok kKKK KA KK KK KKKk h KKK KK KKK KKKk ok ok ok ok kAKX KKK KKK KKK Kk

ORL S1SCsS,#01000010B ;Disable SCL generation and enable SCL
;stretching stretching
ACALL RCV_SL_BY ;Receive slave address, on exit SCL is
; stretched
PROC: MOV C,ACC.0 ;Store R/W bit in FO
MOV FO,C
XRL A,OWN_SLAVE ;Compare received slave address

175

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

TSW-ASM51 V3.0b Serial #00052252 Slave interrupt routine

PAGE 2
LOC OBJ
0011: C2EO
0013: 7050
0015: €3
0016: 115C
0018: A800
001A: A2D5
001c: 5019
00lE: E6
001F: 7A08
0021:
0021: F5D9
0023: 23
0024: 30DAFD
0027: DAF8
0029: D2DF
002B: ES5D9
002D: 30DBFD
0030: A2DF
0032: 4040
0034: 08
0035: 80E7
0037:
0037: 1142
0039: 5039
003B: F6
003C: C3
003D: 115C
003F: 08
0040: 80FS
March 1991

LINE

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

SOURCE

CLR ACC.0 ;Ignore R/W bit
JNZ NO_MATCH ;Leave slave-routine if there is no match
CLR C ;Send ACK

ACALL SEND_ACK

MOV BUF_POINT, SLAVE_SUB_ADDRESS ;Get buffer pointer
MOV C,FO iRestore R/W bit

JNC RCV_SLAVE ;Test R/W bit

PR R KRR KKK AR KKK KR KR KK AR KR KKK KK AR KA KR KRR ARk k ko ke ok hk ok k ok ko kk ok k ok k ok *

;Slave transmitter mode

R R e e e

NXT_TRX:MOV A, @BUF_POINT;Get byte to send

MOV BIT_CNT,#08 ;Init bit counter

NXT_TRX_BIT:

MOV S1BIT,A ;Trx bit and stretch after transmission
RL A ;Prepare next bit to send
JNB WBF, $;Test if bit is sent

DJNZ BIT_CNT,NXT_TRX_BIT ;Test if all bits are sent

SETB SDO ;iRelease SDA line for NO_ACK/ACK reception

MOV A, S1BIT ;Stop stretching

JNB RBF, $;Test if ACK bit is received

MOV C, SDI ;jRead bit, SCL remains stretched

JC EXIT ;NO_ACK received. Exit slave routine

INC BUF_POINT ;ACK received. Update pointer for next byte to
;send

SIMP NXT_TRX

R R e e T s

;iSlave receiver mode

PR

RCV_SLAVE: ;Entry in slave-receiver mode
ACALL RCV_SL_BY ;Receive byte
JNC EXIT ;If STOP is detected, then exit
MOV @BUF_POINT,A ;Store received byte
CLR C ;Send ACK
CALL SEND_ACK
INC BUF_POINT ;Update pointer
SJIMP RCV_SLAVE ;iReceive next byte

176

Philips Semiconductors

Application note

I2C routines for 8XC528 AN438

TSW-ASM51 V3.0b Serial

PAGE 3

LoC OBJ
0042:

0042: 7A08
0044: E5D9
0046: E4
0047:

0047: 30DC10
004A: 30DBFA
004D: BA0105
0050: A2DF
0052: 33
0053: D3
0054: 22
0055:

0055: 45D9
0057: 23
0058: DAED
005A:

005A: C3
005B: 22
005C:

005C: 13
005D: F5D9
005F: 30DAFD
0062: D3DF
0064: 22
0065:

0065: D3
0066: 115C
0068: 800A
March 1991

LINE

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

#00052252 Slave interrupt routine

SOURCE

;**
;Receive byte routine

;On exit, received byte in accu

;0n exit CY=0 if STOP is detected

ok kA kA Ak AR AR Ak kA A A KA AR AR AR AR AR IRR R KA KRR A A KK RXR KKK A RN A A A AR AR ARk AN
i

RCV_SL_BY:
MOV BIT_CNT, #08
MOV A,S1BIT ;Disable stretching from START or previous ACK
CLR A

RCV_BIT:

JNB BB, STOP_RCV ;Test if STOP-condition is received
JNB RBF,RCV_BIT ;Wait till received bit is valid
CJNE BIT_CNT, #01,ASSEM_BIT ;Check if last bit is to be received

MOV C,SDI ;Get last bit without stopping stretching
RLC A

SETB C ;No STOP detected

RET

ASSEM_BIT:

ORL A, S1BIT ;Receive bit; release RBF,CLH and SCIL stretching
RL A
DJNZ BIT_CNT,RCV_BIT

STOP_RCV:
CLR C ;STOP detected
RET

;**

;Send ACK/NO_ACK. Value of ACK in Carry

;*************************r*******x***********************x**********

SEND_ACK:
RRC A
MOV S1BIT,A ;Carry to SDA line
JNB WBF, $;Test if ACK/NO_ACK is sent
SETB SDO ;Release SDA line
RET

§ KRR KRR KKK KKK KRR KX KKK KKK KRR KKK K KKK KR kKK
;No match between received slave-address and own-slave-address
l.************'k*****************************k*‘k************************
NO_MATCH:

SETB C ;Send NO_ACK

ACALL SEND_ACK

SJIMP EXIT

177

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

TSW-ASM51 V3.0b Serial

PAGE 4
LocC OBJ
006A:
006A: 23
006B: C2E0

006D: 43D842

0070: 1147
0072: 8098
0074: C2D9
0076: E5D9
0078: 30001
007B: 22
007C: DODO
007E: DOEO
0080: 32
0081:

March 1991

LINE

139
141

142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

#00052252 Slave interrupt routine

SOURCE

R e R ey

;Entry point when an arbitration-lost condition is detected in

;jmaster-mode.
'.**********r***

MST_ENTRY:
RL A iRestore slave address sofar
CLR ACC.0
ORL S1SCs,#01000010B ;Disable SCL generation and enable SCL
;strectching
ACALL RCV_BIT ;Proceed with receiving rest of slave address
SJMP PROC

PR A AR A AR R AR R R AR R R L R L R R R R puppnpnpnpnpegngnpnpn g

;Exit from interrupt routine
;**‘k***********

EXT

T:

SL:

CLR STR ;Disable stretching on next falling SCL edges
MOV A,S1BIT ;Stop current SCL stretching
JNB ARB_LOST, EX_SL
RET ;Exit when entered from master mode
POP PSW iRestore old CPU status
POP ACC
RETI
END
178

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

4.0 EXAMPLES

4.1 Introduction

Some examples are given how to use the 12C routines in an
applicatlon program. Examples are given for assembly, PL/M and C
program.

The program displays time from the PCF8583P clock/calendar/RAM
on an LCD display driven by the PCF8577.

The example can be executed on the OM4151 12C evaluation board.

4.2 Using the Routines with Assembly Sources
The listing of the example program is shown on page 180. The most
important aspect when using the I12C routines is preparing the input
parameters before the sub-routine call. When, for example, the
1IC_Write routine must be called, the parameters must be called in
the following order:

MOV _IIC_READ_BYTE,#SLAVE_ADR

MOV _IIC_READ_BYTE+1,#COUNT_1

MOV _IIC_READ_BYTE+2,#SOURCE_PTR_1
CALL _lIC_READ

Note that the order of defining the parameters is the same as in a
PL/M-call. An easier way to call the routines is making a macro that
includes the initializing of the parameters. The example program
makes use of macros.

March 1991

179

1IC_Read is then called in the following way:
%I|IC_Read(Slave_Adr,Count_1,Source_Ptr_1);

Note that in the listing the contents of the macro are shown, instead
of the call.

The macro must be written as follows:

%* DEFINE
(IC_Read(SLAVE_ADR,COUNT_1,SOURCE_PTR_1))
(MOV _IIC_READ_BYTE,#%SLAVE_ADR
MOV _IIC_READ_BYTE+1,#%COUNT_1
MOV _IIC_READ_BYTE+2,#%SOURCE_PTR_1
LCALL _IlIC_READ)

Macros for the 12C CALLs are found in 12C.MAC. This file should be
included in all modules making use of the macros. One of the
modules should also include the variable definitions needed by the
12C routines. These are found in file VAR_DEF.ASM. If the program
consists of more than 1 module, then these modules should also
include EXT_VAR.ASM. This file contains the EXTRN- definitions of
the 12C routines.

When and I12C routine is called, the accumulator contains status
information and the CY-bit is set if an error has occurred. The
contents of the accumulator are the same as the returned byte when
using PL/M.

Philips Semiconductors

Application note

I2C routines for 8XC528

AN438

TSW-ASM51 V3.0b Serial #00052252 Assembly example program

LOC OBJ
00A2

0001

0074

0000:

000A:

000E:

0000: 020000
0000:

0000: 900073
0003: 7581FF
0006: 750E00
0009: 750022
000C: 75010A
000F: 120000
0012: E4
0013: F50A
0015: F50B
0017: 7500A2
001a: 750102
001D: 75020A
0020: 120000
March 1991

o oo W™ w

W™ ™o

LINE

@ N oUW N

[l N = S S S S) N
U W N R oW Lo e

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

SOURCE

$TITLE (Assembly example program)
$DEBUG

PAGE 1

;Hours and minutes will be displayed on LCD display
;Dot between hours and minutes will blink

$
#1
8
$
#1
#9

”C:\USER\VAR_DEF.ASM"
“DEMO_ASM.ASM”

”C:\USER\I2C.MAC”
"DEMO_ASM.ASM”

CLOCK_ADR EQU O0A2h
CL_SUB_ADR EQU 0lh
LCD_ADR EQU 74h

RAMVAR SEGMENT DATA

USER SEGMENT DATA
RSEC RAMVAR
STACK: Ds 10

TIME_BUFFER:DS 4
LCD_BUFFER: DS 5

CSEG AT 00
LJMP APL_START

RSEG USER

APL_START:

MOV DPTR, #LCD_TAB
MOV SP, #STACK-1
MOV LCD_BUFFER, #00

MOV _Init_IIC_Byte ,#22h
MOV _Init_IIC_Byte+l, #TIME_BUFFER
LCALL _Init_IIC
;Initialize I2C interface
CILR A
MOV TIME_BUFFER,A
MOV TIME_BUFFER+1,A

MOV _IIC_Write_Byte ,#CLOCK_ADR
MOV _IIC_Write_Byte+1,#2

MOV _IIC_Write Byte+2,#TIME_BUFFER
LCALL _IIC_Write

180

;Include I2C var. definitions

;Include I2C macro’s

;Address of PCF8583
iSub address for reading time
;Address of PCF8577

iSegment for variables
;iSegment for application
;jprogram

iStack area
;Buffer for I2C strings

;jPointer to segment table
;Initialize stack
iControl word for LCD driver

;Prepare buffer for clock int.

Philips Semiconductors

Application note

I2C routines for 8XC528 AN438

TSW-ASM51 V3.0b Serial #00052252 Assembly example program PAGE 2
LOoC OBJ LINE SOURCE
45 ;Initialize clock
46
0023: 47 REPEAT:
0023: 7500A2 R 48 MOV _IIC_Read_Sub_Byte ,#CLOCK_ADR
0026: 750104 R 49 MOV _IIC_Read_Sub_Byte+l, #4
0029: 75020A R 50 MOV _IIC_Read_Sub_Byte+2, #TIME_BUFFER
002C: 750301 R 51 MOV _IIC_Read_Sub_Byte+3, #CL_SUB_ADR
002F: 120000 R 52 LCALL _IIC_Read_Sub
53 ;Read time
54
55 ;Time has been read. Order: hundreds of sec’s, sec’s, min’s and hr'’s
0032: E50D R 56 MOV A, TIME_BUFFER+3 iMask of hour counter
0034: 543F 57 ANL A, #3Fh
0036: F50D R 58 MOV TIME_BUFFER+3,A
59
0038: 120054 R 60 CALL CONVERT ;Convert time data to LCD
;segment data
61
62 ;Check if dot has to be switched on
003B: 431101 R 63 ORL LCD_BUFFER+3,#01h
64 ;If 1lsb of seconds is ‘0’, then switch on dp
003E: E50B R 65 MOV A, TIME_BUFFER+1 ;Get seconds
0040: 13 66 RRC A
0041: 4003 67 JC PROCEED
0043: 430F01 R 68 ORL LCD_BUFFER+1, #01 ;Switch on dp
69
70 ;Display new time
0046: 71 PROCEED:
0046: 750074 R 72 MOV _IIC_Write_Byte ,#LCD_ADR
0049: 750105 R 73 MOV _IIC_Write_Byte+1,#5
004C: 75020E R 74 MOV _IIC_Write_Byte+2, #LCD_BUFFER
004F: 120000 R 75 LCALL _IIC_Write
76
0052: 80CF 77 SJMP REPEAT ;iRead new time
78
79
80 ;CONVERT converts BCD data of time to segment data
0054: 780F R 81 CONVERT:MOV RO, #LCD_BUFFER+1 ;RO is pointer
0056: E50D R 82 MOV A, TIME_BUFFER+3 ;Get hours
0058: C4 83 SWAP A ;Swap nibbles
0059: 12006D R 84 CALL LCD_DATA ;jConvert 10’s of hours
005C: ES0D R 85 MOV A, TIME_BUFFER+3
005E: 12006D R 86 CALL LCD_DATA ;jConvert hours
0061: E50C R 87 MOV A, TIME_BUFFER+2) ;jGet minutes
0063: C4 88 SWAP A
0064: 12006D R 89 CALL LCD_DATA ;Convert 10’'s of minutes
0067: E50C R 90 MOV A, TIME_BUFFER+2
0069: 12006D R 91 CALL LCD_DATA ;Convert minutes
March 1991 181

Philips Semiconductors

Application note

I2C routines for 8XC528 AN438

TSW-ASM51 V3.0b Serial

LocC OBJ LINE
006C: 22 92
93

94

006D: 95
006D: 540F 96
006F: 93 97
0070: F6 98
0071: 08 99
0072: 22 100
101

102

0073: 103
0073: FC60DA 104
0076: F266B6 105
0079: 3EEOFE 106
007C: E6 107
108

007D: 109

#00052252 Assembly example program PAGE 3
SOURCE
RET

;LCD_DATA gets data from segment table and stores it in LCD_BUFFER
LCD_DATA:

ANL A, #0FH ;Mask off LS-nibble

MOVC A, @A+DPTR ;Get segment data

MOV @RO,A ;Save segment data

INC RO

RET
i
;iConversion table for LCD
LCD_TAB:

DB OFCH, 60H, ODAH ;007,01 , 020

DB OF2H, 66H, 0B6H ;’37,'4",'5"

DB 3EH, OEOH, OFEH ;'6°,'7",8"

DB OE6H ;9

END

4.3 Using the Routines with PL/M-51 Sources
The following listing shows the listing of the clock program in
PL/M-51. The procedures are untyped. The routines are used the
same way as in the examples of chapter 3.2.

SOPTIMIZE (4)
$DEBUG
$CODE

/* Hours and minutes will be displayed on LCD display

Dots between hours and minutes will blink */

Demo_plm: Do;

/* External declarations */

Init_IIC: Procedure (Own_Adr,Slave_Ptr) External;
Declare (Own_Adr,Slave_Ptr) Byte Main;

End Init_IIC;

IIC_Write: Procedure(S1_Adr,Nr_Bytes, Source_Ptr) External;
Declare (S1_Adr,Nr_Bytes,Source_Ptr) Byte Main;

End IIC_Write;

IIC_Read_sub: Procedure(Sl1_Adr,Nr_Bytes,Dest_Ptr,Sub_Adr) External;
Declare(S1_Adr,Nr_Bytes,Dest_Ptr, Sub_Adr) Byte Main;

End IIC_Read_Sub;

March 1991

182

Philips Semiconductors Application note

I2C routines for 8XC528 AN438

Clock: Do;

/* Variable and constant declarations */

Declare LCD_TAB(*) Byte Constant (OFCh,60H,ODAH,0F2H, 66H,
0B6H, 3EH, OEOH, OFEH, OE6H) ;

Declare Time_Buffer(4) Byte Main;

Declare LCD_Buffer(5) Byte Main;

Declare Tab_Point Word Main;

Declare (LCD_Point,Time_Point) Byte Main;

Declare Segment Based LCD_Point Byte Main;

Declare Time Based Time_Point Byte Main;

Declare Tab_vValue Based Tab_Point Byte Constant;

Declare clock_Adr Literally ‘0A2h’;
Declare LCD_Adr Literally ’74h’;
Declare Cl_Sub_Adr Literally ‘01h‘;

Call Init_IIC(22h, .Time_Buffer);

LCD_Buffer(0)=0; /* LCD control word */

Time_Buffer(0)=0;

Time_Buffer(1)=0;

Call IIC_Write(Clock_Adr,2,.Time_Buffer); /* Initialize clock */

Do While LCD_Buffer(0)=0; /* Program loop */
Call IIC_Read_Sub(Clock_Adr,4,.Time_Buffer,Cl_Sub_Adr) ;
/* Get time */
LCD_Point=.LCD_Buffer+l; /* Initialize pointers */
Time_point=.Time_Buffer(3);
Tab_Point=.LCD_Tab(0)+SHR(Time,4); /* 10-HR's */
Segment=Tab_Value;

LCD_Point=LCD_Point+1;

Tab_Point=.LCD_Tab(0)+ (Time AND OFH); /* HR’s */

Segment=Tab_Value;

Time_Point=Time_Point-1;

LCD_Point=LCD_Point+1;

Tab_Point=.LCD_Tab+SHR(Time,4); /* 10-MIN’'s */

Segment=(Tab_Value OR 01H); /* dp */

LCD_Point=LCD_Point+1;

Tab_Point=.LCD_Tab+ (Time AND OFH); /* MIN’s */

Segment=Tab_Value;

Time_Point=.Time_Buffer(1l)+1; /*Check sec’s for blinking */

LCD_Point=.LCD_Buffer+l;

If (Time AND 01H)>0 then Segment=(Segment OR 01H);

Call IIC_Write(LCD_Adr,5,.LCD_Buffer); /* Display time */
End;

End Clock;

End Demo_plm;

March 1991 183

Philips Semiconductors Application note

I2C routines for 8XC528 AN438

4.4 Using the Routines with C Sources

An example of a C program using the 12C routines follows. Function
prototypes are found in header file “i2c.h”. In this example the
function prototypes are written in such a way that not value is
returned by the function. If the STATUS byte is needed, the header
file may be changed to return a byte. Note that the function calls are
written in upper-case. This is due to the fact that the used version of
the assembler/linker is case sensitive.

#include <C:\USER\i2c.h>

rom char LCD_Tab[]={0xFC, 0x60, 0xDA, 0xF2, 0x66, 0xB6, 0x3E,
0xEQ, OXFE, 0XE6} ;

void main()

#define Clock_Adr 0xA2

#define LCD_Adr 0x74

#define C1_Sub_Adr 0x01

rom char * Tab_Ptr;
data char Time_Buffer(4];
data char * Time_Ptr;
data char LCD_Buffer[5];
data char * LCD_Ptr;

INIT_IIC(0x22,&Time_Buffer);

LCD_Buffer[0]1=0; /* LCD control word */

Time_Buffer[0]=0;

Time_Buffer[1]=0;

IIC_WRITE(Clock_Adr,2,&Time_Buffer); /* Initialize clock */

while (1) /* Program loop */
{
IIC_READ_SUB(Clock_Adr,4,&Time_Buffer,Cl_Sub_Adr);
/* Get time */
LCD_Ptr = &LCD_Buffer([l]; /* Initialize pointers */
Time_Ptr = &Time_Buffer([3];

Tab_Ptr = (LCD_Tab+ (*Time_Ptr >> 4)); /* 10-HR's */
*(LCD_Ptr++) = *Tab_Ptr;
Tab_Ptr = (LCD_Tab+(*(Time_Ptr--) & O0xO0F)); /* HR’s */

*(LCD_Ptr++) = *Tab_Ptr;
Tab_Ptr = (LCD_Tab+ (*Time_Ptr >> 4)); /* 10-MIN's */
*(LCD_Ptr++) = (*Tab_Ptr | 0x01); /* dp */
Tab_Ptr = (LCD_Tab+ (*Time_Ptr & OxOF)); /* MIN’s */
*LCD_Ptr = *Tab_Ptr;
Time_Ptr = &Time_Buffer[1l]; /* Check sec’s for blinking */
- LCD_Ptr = &LCD_Buffer([1];
if ((*Time_Ptr & 0x01)>0)

*LCD_Ptr = (*LCD_Ptr | 0x01);
IIC_WRITE(LCD_Adr,5,&LCD_Buffer); /* Display time */
}

March 1991 184

Philips Semiconductors Application note

I2C routines for 8XC528 AN438

5.0 CONTENTS OF DISK

A disk contains the following 3 directories:

1: \USER
This director contains the files that may be used in the user program.
12C_DR.LIB Library with 12C routines.
12C.H Header file for C applications.
12C.MAC Macro’s for the 12C routine calls in assembly programs.

VAR_DEF.ASM Include file with variable definitions for assembly programs.
EXT_VAR.ASM Include file with external definitions for assembly programs.

LIB.BAT Example batch file to create I2C_DR.LIB.
ASM.BAT Example batch file to assemble source modules for library.
2: \EXAMPLE

This directory contains the source files of the examples described in chapter 4.0.
DEMO_ASM.* Assembly example.

DEMO_PLM.* PL/M example.

HEAD_51.SRC Example of environment file for PL/M example.

DEMO_C.* C example.
CSTART.ASM Example of environment file for C example.
3: \SOURCE

This directory contains the source files of the modules in the library.

March 1991 185

Philips Semiconductors

Application note

*
Using the P82B715 I2C extender on long cables
L

Author: Don Sherman, Sunnyvale

The P82B715 I12C Buffer was designed to
extend the range of the local I2C bus out to
50 Meters. This application note describes
the results of testing the buffer on several
different types of cables to determine the
maximum operating distances possible. The
results are summarized in a table for easy
reference.

The 12C bus was originally conceived as a
convenient 2 wire communication method
between Integrated Circuits located within a
common chassis, such as inside a TV set or
inside a VCR. The serial protocol contains an
address, or identifying code, for each type of
device and additional internal addresses, if
needed within the addressed device. Each
device has its own decoding circuitry to allow
it to recognize its own unique address or
identifying code. To communicate, a device
watches the bus activity and jumps in when it
sees a stop. Once a Master gets control of
the bus, it sends the address of the particular
device with which it wants to communicate.
Communication will then transpire between

. the Master and the Slave device. The
existence of many types of ICs which have
built-in 12C interface capabilities makes
system design almost as easy as drawing a
block diagram. Real-time clocks, RAM, A/D
converters, EEPROMSs, Microcontrollers,
Keyboard encoders, LCD display drivers, and
many other I2C supported chips all
communicate over two wires rather than
needing 16 Address lines, 8 data lines and
Address decoders along with handshake
signals, which more conventional designs
would require to be routed all over the Printed
Circuit board.

Now, with the introduction of the 12C buffer
chip, itis easy to branch out beyond the
single chassis mode and use this convenient
local area network to tie together whole
systems without the need to convert from the
“‘internal” 12C protocol to an external
communication medium such as RS-232 and
then RS-485. By using the new Philips I2C
buffer, the external systems’ components can
be accessed as easily as the internal 12C
connected components.

The P82B715 is an 8 pin IC which contains 2
identical amplifier sections to allow for the
current amplification and buffering of both the
SDA and the SCL signals on the 12C bus.
Each section in the P82B715 contains a
bipolar times 10 current amplifier which
senses the direction of current flow through
an internal 30 ohm series resistor in the 12C
line. The P82B715 then boosts the current,
while keeping the voltage gain at unity, and
continues to maintain the voltage drop
direction across the resistor. This

June 1993

configuration results in different waveforms
as the P82B715 starts to do its job. If the
driving source has a strong current sink
capability, then it will start to drive the
buffered I2C line immediately through the 30
ohm resistor. A microsecond later the
P82B715's amplified pull down current kicks
in and pulls the line down even harder. If the
driving IC is only capable of the 12C specified
3 milliamp pull down current, the buffered bus
will fall a little and then just wait at that
voltage level for the propagation delay of the
amplifier to finally turn on and bring the
buffered bus down to a logic low. Thus, there
will always be some form of a step in the
falling edge of the buffered output waveform,
see Figure 1. A weak source will have a step
(plateau) up near 4 volts and a strong source,
such as the Philips Semiconductors 87C751
microcontroller, will have the step occur
below 2 volts. The position of the step will be
determined by the current sink capability of
the I2C bus driver versus the value of the
pull-up resistor which is used on the buffered
12C bus, Vstep = 5V — (Isink x Rbuf). For
example: Vstep = 5V — (3mA x .165 k ohms)
=5 -.495 = 4.5Volts; another example:
Vstep = 5V — (20mA x .165 k ohms) = 5 - 3.3
=1.7Volts.

Running the 12C signals over long distances
poses several problems. The 12C SDA and
SCL lines are monitored by all of the ICs
connected on the I2C bus. These ICs each
have their own circuitry to decipher the
information on the bus. In normal operation, a
Start occurs when there is a high to low
transition on the SDA line while SCL is high.
Obviously, if any external noise is coupled
into the SDA line, it could be mistakenly
perceived as a Start. Because of this, some
form of shielding will be preferred to protect
the two I2C signals from external noise
sources. During the transmission of data
there are signals which are active on both
SDA and SCL. If these normal signals are
cross-coupled, then data can be corrupted.
Thus, although the standard telephone
twisted pair cable is the most commonly
available built in cable, it is not recommended
for long 12C runs. This cable maximizes
crosstalk, due to the twisted pair
configuration and, since there is no shielding,
is very vulnerable to adjacent wire telephone
signal coupling and to any stray external
electromagnetic interference. This effect can
be somewhat reduced by running a signal
wire and a grounded wire as adjacent pairs.

Long distance cables present capacitive
loading which must be overcome with the
driver chips. The limiting factor is the amount
of pull-up current which is available to charge
the line capacitance. With the simple resistor

186

AN444

pull-up recommended by I12C standards,
three milliamps is available for charging this
line capacitance. The rise time of the signal
will increase linearly with the increase in
capacitive loading and the specified
maximum capacitive loading is only 400 Pico
Farads for guaranteed 100kHz
communication rates. The P82B715 current
buffer allows for 30 milliamps of pull-up
current, with a resulting maximum capacitive
loading of 4,000 Pico Farads (4 Nano
Farads).

The 12C hardware inputs look at the 12C
signals and act when those signals pass
through the active linear region at about 1.2
to 1.4 volts, and are detected as digital levels.
Thus, there is a delay between when an
output transistor turns off and when the rising
signal is detected as a logic one at the
receiver. This time depends on the value of
the pull-up resistor, the perceived
capacitance at the transmitting end, the delay
through the cable, and finally the delay
through the receiver’s amplifier to its output
stage. The maximum allowable time is limited
by the characteristic that the 12C master
provides the clock signal which must travel
down the cable and be received by the slave.
This slave must act on the clock signal and
produce data information which is sent back
to the master with an additional set of delays.
Upon reception the data must be put in its
proper place before the master starts its next
clock signal, or an error will occur.

Different types of cable were tested and the
results are shown in Table 1. Keep in mind
that the results are based on cable runs in a
low electrical noise environment. If reliable
operation is desired in a high electrical noise
environment, shielded cable must be used.
For “short” runs, flat cable with every other
conductor grounded, seems to provide a
good, low capacitance medium for 12C
transmission, otherwise, the shielded audio
cable seemed to provide the best
price/performance. Note that for long runs, it
is desirable to have a separate power supply
at each end of the cable, and the shield or
ground wire will provide a common reference
between the two supplies. The voltage drop
due to the resistance of the wire usually is the
limiting factor for very long runs of cable
where the power to the remote system must
also come through the cable. Table 1 shows
the results of testing with longer and longer
cable lengths until failures were detected.
The values in the table represent the
maximum cable lengths which still provided
error free code from a modified version of the
Ping-pong program which is listed in
Application Note AN430.

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

—

step

Volts
n

\

2 4 6 8 10
time in microseconds

12

Figure 1. P82B715 Output Waveform on Long Cable

Table 1. Test Results with P82B715 Over Long Cables

CABLE TYPE

Ohms/m pF/m

Total Length

Total Ohms Total Cap.

Belden 8723 45 Ohm Audio

polyester shielded with common drain wire

2 each 2—24AWG wire stranded Beldfoil Aluminum- .049 115

SDA & ground on one pair; SCL & ground on other pair

305M (1000°)

115 48.2nF

Belden 8723 45 Ohm Audio

using 1 shielded pair, SDA on Red, SCL on Black .049 115

330M (1100°)

12.7 53nF

RG-174/U 50 Ohm Video Cable
SDA and grounded shield in one cable
SCL and grounded shield in one cable

.318 101

150M (500°)

47.7 156.2nF

“Telephone Cable”

Medium Speed Data
SDA and ground in one twisted pair
SCL and ground in one twisted pair

22824 AWG Solid Copper Twisted Pair, Level 3 LAN &

.0286 66

95M (310°) 27

6.4nF

Flat “Ribbon” Cable, every other conductor grounded .20 52

400M (1320°)

80.5 21nF

In all of the tests, the power supply voltage
was 4.5 volts. The ground for the remote test
fixture was through the long cable. Since 4.5
volts is the recommended minimum voltage
for both the 87C751 and the P82B715, it was
not possible to operate the remote unit on
power supplied through the long cable, since
any ohmic drop would place the ICs out of
their specified range. However, it is
necessary to connect the grounds between
the two units for the best noise immunity.

The P82B715 is designed to drive a 4 nF
capacitive load at 100kHz. However, the
actual total capacitances of the long cables
which worked were substantially greater than
this. The loading did effect the software
driven hardware part of the 87C751. To
achieve a true 100kHz data rate, it was
necessary to shorten the '751 Timer values
for the 12C drivers. This resulted in an
asymmetrical waveform, but did achieve a 10
microsecond period (100kHz). This

June 1993

asymmetry in duty cycle can be easily seen
in the Figure 1 waveform.

The test with the Belden 8723 Audio Cable
worked if one of the shielded pair was
connected to a signal and the other was
connected to ground or +5volts. When both
wires were connected in parallel as signal
wires, the capacitance to ground doubled and
the test failed. Also note that the adjacent
wire mutual inductive coupling of the SDA
and SCL signals did not seem to cause any
problems even out to 1000 feet. This
indicated that possibly the Belden 9452 45
ohm beldfoil shielded audio cable with a
single set of twisted pair wires would be a
good candidate to also try.

Flat ribbon cable provided a good
compromise between shielding and
reasonable capacitance. It is possible to
increase the shielding effect by using flat
cable with an etched copper foil layer on the
back side of the cable. Noise can be induced

187

into the cable by folding it back over itself for
mutual induction effects, and also by
operating a noise source close to the cable. A
transformer type of soldering iron and
florescent light transformers seemed to be
good noise sources.

The P82B715 can drive multiple P82B715
remote units. The line should have some
form of pull-up resistor at each driver. If only
two drivers are used, as shown in Figure 2,
the load should be split between the two
drivers. For example, if the pull-up current is
to be 30 milliamps and the voltage is 5 volts,
the pull-up resistance should be: 5V/.030
amps = 165 ohms. This should be
implemented by placing a 330 ohm resistor at
each end of the cable so that the parallel
resistance is 165 ohms and each end of the
line is terminated. Remembering that the
current gain can be as low as 8 and that most
runs will not be to the maximum possible
distance, lower values of pull-up current can

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

be used with the appropriate modifications to
the above equations.

For larger fan-out with fixed locations, the
load resistance should also be evenly divided
so that the parallel combination of all of the
pull-up resistors will provide the desired D.C.
pull-up current.

If some of the remote units will be pluggable,
it will be necessary to divide the pull-up load
to accommodate all of the possible
combinations of possible fanout. Figure 3
shows an example of driving up to 30 remote,
pluggable peripherals. On the 3 milliamp side
of the P82B715 a complete I2C system may
exist. In Figure 3, a local 12C network cluster
could be joined to other local network clusters
through the P82B715 buffered bus so that
hundreds of I2C devices could potentially be
interconnected.

The ease of connecting 12C clusters into a
complete LAN opens the door for many new
uses of components which have an 12C bus
connection. Now an electronic instrument can
have access to remote keyboards and
remote sensors by using the I2C bus. The
instrument’s output can easily be shown on
multiple remote displays all connected with
the 12C bus. Multiple instruments can also
pass data back and forth over the I12C bus.
Thus, we see that the 12C bus can become
an effective and inexpensive Local Area
Network by using the P82B715 I2C bus
extender.

THE TEST SETUP

These tests were run on two identical test
boards which each use a Philips
Semiconductors 87C751 microcontroller that
drives the 12C buffer which has a 330 ohm
pull-up resistor. The schematic is shown in
Figure 4. The software is a modified version
of the “Ping-Pong” program which is
described in the Philips Semiconductors
Application Note, AN430, “Using the
8XC751/752 in Multimaster applications”.
This program sends a number down the 12C
line and, when received, the receiving unit
becomes a master and increments the
number and sends it back to the first unit
where it is checked and then the process

June 1993

repeats itself. The software has extensive
error detection capability and monitors for
corruption of data, false starts, over run of
data, stuck lines and about anything else
which might indicate a problem. If any errors
did occur, a software counter was
incremented. In this setup, the counter was
stopped at Hex 07F to prevent wrap around
and the contents of the counter are displayed
on a bank of 8 LEDs. The MSB of the counter
register was used as an indicator that the unit
was working. The MSB LED flashes at about
a1 Hz rate when the unit is operating
normally. When a cable length was reached
which was too long, the MSB LED would stop
flashing and the counter would rapidly fill up
and stop with all 7 LEDs on (LED on

indicates a logic “1” in this application).

THE TEST HARDWARE

A general purpose test rig was designed so
that future needs of a general 12C platform
could also be met. All of the port pins on the
'751 were used. The inputs to the system
were a toggle switch with a pull-up resistor
connected to P0.2 (because this pin is Open
Drain) and an octal DIP switch connected to
port 1 (the internal pull ups of the port were
used, so no external pull-up resistors were
needed). The output is displayed through an
octal buffer connected to port 3. A logical “1”
on the pin will light up the LED. The 12C
signals, SDA and SCL, are connected to the
12C buffer chip and the outputs of the buffer
are pulled up by 330 ohm resistors. The
parallel combination of the buffered
transmitting end pull-up and the receiving end
pull-up resistors is 330/2 ohms, which results
in a pull-up load current of 30 milliamps. This
current from the two pull-up resistors must be
sunk by the single driving transistor of the
acting sender. The effective loading seen by
the '751 is the I2C buffer’s load divided by 10.
Thus, the '751’s 12C outputs will sink 3
milliamps when driving the 12C buffer which is
sinking 30 milliamps on the buffered bus.

The software monitor routine allows the user
to monitor any internal "751 RAM location and
display the contents on the LEDs. The
monitor routine also allows the user to modify
the contents of any RAM location including

188

SFR space. The Ping-Pong program needed
the first 8 locations in RAM, so the stack
pointer for this application was changed from
the default location of 07H to location 09H.
This starts the stack at 0AH.

To read the contents of RAM, set the DIP
switches to the desired RAM address. The
toggle switch is set to a “1”. Pressing the
Reset switch causes the microprocessor to
reset and then enter the monitor program
where the program then waits until the toggle
switch is changed. Upon closing the toggle
switch (a “1” to “0” transition) the program
loads the DIP switch selection into RO of
bank 1 (RAM location 08H). The program
then loads the contents of the RAM location
pointed to by RO (bank 1) and copies it into
port 3, where it is displayed on the 8 LEDs.
Thus, the Address is seen by looking at the
DIP switches and the contents pointed to are
displayed on the LEDs. Note that this indirect
Address latch location (R0,bank 1) would
have been the normal beginning of the stack,
had it not been changed.

The contents of an internal RAM location can
also be modified with this program. First, set
the DIP switches to the desired Address and
set the toggle switch to “0”. Reset the
processor and then set the toggle switch to
“1”. This transfers the address to RO (bank
1). Next, load the desired new data, which is
to be stored in RAM, into the DIP switches,
and then set the toggle switch to “0”. At this
time the LEDs will now show the Address of
RAM and the DIP switches show what was
written into the selected RAM location. To
verify that the data was actually written into
the RAM, follow the read RAM sequence.

Although this may seem to be a bit
cumbersome, it is a workable way to see
what is happening inside of the '751.
Remember that it is necessary to re-enter the
monitor program, or at least to duplicate the
read RAM of RO (bank 1) and output to

port 3, to see the latest version of the
contents of the RAM location. Since this
experiment only looked at the contents of one
RAM location, the above method was easy to
use and the display always showed the
current status of the desired RAM location
because it is updated often by the software.

Philips Semiconductors Application note

Using the P82B715 I12C extender on long cables AN444
Vee Vee
— 330Q 330Q S
3mA ™ | |
iocal 2C | | 30 mA Buffered 12C | / 3mA
— local 12C
1 P82B715 P82B715 T
o o SU00434

Figure 2. P82B715 Driving Long Line

June 1993 189

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables AN444
Vee
Rslave
10kQ
P82B715
Vee ‘ 3mA
local 12C
Rmaster ‘
330Q Vee
P82B715
amA ‘ 151030 mA fosll(:ge
local I2C Buffered I2C
P82B715
3mA
< } local I2C
/N
/'\&
Up to 30 stations
Vee
Rslave
10kQ
P82B715
3mA
I local I2C
SU00435
Figure 3. Large Fan-Out Configuration for P82B715
Note that V¢ is 5 volts for these values of load resistors. If a
different voltage is desired, the calculations are as follows:
\ 5V
Rmaster = 1—5%‘3; example: Rmaster = gz = 0-33k = 330Q

June 1993

The pluggable units would be calculated as follows:
Parallel combination of Rgjave = Rmaster
Rslave = Rmaster X Fan out

example: Rgjaye = 330Q x 30 = 9900Q = 10k

190

Philips Semiconductors

Application note

Using the P82B715 12C extender on long cables AN444
v
Vee ce { +5VOLTS
o 3300 2 330Q
| —< GROUND
o4 P82B715 . §] <
O1pF poq L SPA 2 3 ____< BUFFERED SDA
p— 87C751
30pF 6
—' il LI po.o-2—SCt ’ { BUFFERED SCL
_‘1_6MH2 j .
T = 9F
10
30pF X 20 LED 3300
pa7 |21 MSB 9 Vee —11-—91—/\/\/\/‘
= Pag [22 8 12— AANA
y pas |23 7 18y AN A A
ce 1 6 14
P3.4 X e AVAVAV
RESET P33 |2 5 74HCT245 |15 > A A A
51@ = P2l : b AAAA
22u7 : . AN
9 RST Pet 5 LSB 2 18
P3.0 —{>|—/\/\/\/—
Voo 19
;
R 1
N —
1o| -
S p— _
DIP SWITCH
10k py 7|20 MSB O/O
19
6 P1.6 O/O
P02 pyg| 18 7o
SWITCH
'? p1.4 -7 7o
T P13 2 O/ ©
P12l O/O
- p1.1 |14 o/ O
by ol 13 LSB A N
- SU00436

June 1993

Figure 4. Schematic

191

Philips Semiconductors Application note

Using the P82B715 I2C extender on long cables AN444

R R R R R e e

Multimaster Code for 83C751/83C752
4/14/1992 MODIFIED BY DON SHERMAN 5-21-92
; ;; is used to show where original code was modified

R R e R R s s s s s s s s St
i

; This code was written to accompany an application note. The I2C routines
are intended to be demonstrative and transportable into different
application scenarios, and were NOT optimized for speed and/or memory
utilization.

Yoram Arbel

STITLE(83C751 Multi Master I2C Routines)
$DATE(4/14/1992)

$MOD751 ; ;NEED TO USE $MOD752 FOR 752 EMULATOR
;iEI2 EQU ES NEED ENABLE FOR EMULATOR
$DEBUG

Rk K K kK K kKKK K K KA KK KA KKK KKK Rk KKK KK KRR AR KKK KKK KRR KRR A KRR KKK Kk ok ok ok ok ok kkhkk

; 8XC751 MULTIMASTER I2C COMMUNICATIONS ROUTINES
; Symbols and RAM definitions

KKK ok kK K K KKK K K K K R K K R K K K K K K K K K K kKKK KKK AR KKK K KKK KRR RN KKKk Kk ok k ok ok ok kkh ok ok

; Symbols (masks) for I2CFG bits.

BTIR EQU 10h ; TIRUN bit.
BMRQ EQU 40h ; MASTRQ bit.
; Symbols (masks) for I2CON bits.

BCXA EQU 80h ; CXA bit.
BIDLE EQU 40h ; IDLE bit.
BCDR EQU 20h ; CDR bit.
BCARL EQU 10h ; CARL bit.
BCSTR EQU 08h ; CSTR bit.
BCSTP EQU 04h ; CSTP bit.
BXSTR EQU 02h ; XSTR bit.
BXSTP EQU 01lh ; XSTP bit.

Note:

Specific bits of the I2CON register are set by writing into this register a
combination of the masks defined above using the MOV command.

The SETB command should not be used with I2CON, as it is implemented by
reading the contents of the register, setting the appropriate bit and
writing it back into the register. As the functionality of the Read and
Write portions of the I2CON register is different, using SETB may cause
unwanted results.

; Message transaction status indications in MSGSTAT:

SGO EQU 10h ; Started Slave message processing.
SRCVD EQU 11h ; as a slave, received a new message
SRLNG EQU 12h ; received as slave a message which is too
; long for the buffer
STXED EQU 13h ; as slave, completed message transmission.
SRERR EQU 14h ; bus error detected when operating as a slave.
MGO EQU 20h ; Started Master message processing.
MRCVED EQU 21h ; As Master, received complete message from
; slave.
MTXED EQU 22h ; As Master, completed successful message
; transmission (slave acknowledged all data
; bytes).
MTXNAK EQU 23h ; As Master, truncated message since slave did
;

not acknowledge a data byte.

June 1993 192

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

MTXNOSLV EQU

TIMOUT EQU
NOTSTR EQU

2

3
3

4h ; AS Master, did not receive an acknowledgement
; for the specified slave address.

Oh ; TIMERI Timed out.

2h ; Master did not recognize Start.

i RAM locations used by I2C interrupt service routines.

MASCMD DATA
SUBADD BIT
RPSTRT BIT
SETMRQ BIT
DSEG

MSGSTAT: Ds
MYADDR : DS
DESTADRW: DS
DESSUBAD: DS
MASTCNT : DS

TITOCNT: Ds
StackSave: DS

MasBuf: DS
SRcvBuf: DS
STxBuf: DS

RBufLen EQU

20h

MASCMD. 0

MASCMD. 1

MASCMD. 2

AT 24h

1 ; I2C communications status.

1 ; Address of this I2C node.

1 ; Destination address + R/W (for Master).

1 ; Destination subaddress.

1 ; Number of data bytes in message (Master,
; send or receive).

1 ; Timer I bus watchdog timeouts counter.

1 ; SP save location (used when returning from
; bus recovery routine).

4 ; Master receive/transmit buffer, 8 bytes.

4 ; Slave receive buffer, 8 bytes.

4 ; Slave transmit buffer, 8 bytes.

4h ; The length of SRcvBuf

R R R R L S S g oy

; APPLICATION output pins and RAM definitions

PR R R R R 2 R L R AR s

; Outputs used by the application:

i i TogLED BIT
; i ExrLED BIT
i ;OnLED BIT

; Application RAM
APPFLAGS DATA
TRQFLAG BIT
SErrFLAG BIT

FAILCNT: DS

TOGCNT : DS

June 1993

1

1

P1.0 ; Toggling output pin, to confirm
; that the ping-pong game proceeds fine.
P1l.1 ; Error indication.
P1.3 ;
21h
APPFLAGS.0

; Flag for monitoring I2C transmission success.
APPFLAGS.1

; Toggle counter.

193

Philips Semiconductors Application note

Using the P82B715 I2C extender on long cables AN444

A R R R R R R R R R SRS A AR AR S eSS Rl
i

H Program Start

R R R R R R R e S A S S S S AR R R R
i

CSEG
; Reset and interrupt vectors.

AJMP DONMON ; iJUMP TO MONITOR
;Reset vector at address 0.

; A timer I timeout usually indicates a 'hung’ bus.

ORG 1Bh ; Timer I (I2C timeout) interrupt.
TimerI: SETB CLRTI
AJMP TIISR ; Go to Interrupt Service Routine.

R R R R R R A e e R e ST s s
i

; I2C Interrupt Service Routine

R R R R R R e e R R e e R E RS e e

Notes on the interrupt mechanism:

; Other interrupts are enabled during this ISR upon return from XRETI.

; Limitations imposed on other ISR’s:

; - Should not be long (close to 1000 clock cycles). A long ISR will cause

; the I2C bus to ’‘hang”, and a TIMERI interrupt to occur.

- Other interrupts either do not use the same mechanism for allowing
further interrupts, or if they do - disable TIMERI interrupt beforehand.

The 751 hardware allows only one level of interrupts. We simulate an

; additional level by software: by performing a RETI instruction (at location
; XRETI) the interrupt-in-progress flip-flop is cleared, and other interrupts
; are enabled. The second level of interrupt is a must in our implementation,
; enabling timeout interrupts to occur during “stuck” wait loops in the I2C

; interrupt service routine.

ORG 23h
I2CISR: CLR EI2 ; Disable I2C interrupt.
ACALL XRETI ; Allow other interrupts to occur.
PUSH PSW
PUSH ACC
MOV A,RO
PUSH ACC
MOV A,R1
PUSH ACC
MOV A,R2
PUSH ACC
MOV StackSave, SP
CLR TIRUN
SETB TIRUN
JB STP, NoGo
JNB MASTER, GoSlave
MOV MSGSTAT, #MGO
JB STR,GoMaster
NoGo: MOV MSGSTAT, #NOTSTR
AJMP Dismiss ; Not a valid Start.
XRETI: RETI

June 1993 194

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

PR R R R R R R g g
i

H Main Transmit and Receive Routines

PR R R R R L TR R R S e aprgegngea g
i

; SLAVE CODE -
; GET THE ADDRESS
GoSlave: MOV MSGSTAT, #SGO
AddrRcv: ACALL ClsRcv8

JNB DRDY, SMsgEnd
STStRW: MOV C,ACC.0

CLR ACC.0

Jz GolIdle

Jc S1lvTx

Must be some strange Start or Stop

before the address byte was completed.

Not a valid address.

Save R/W~ bit in carry.

Clear that bit, leaving “raw” address
If it is a General Address

- ignore it.

NOTE:

One may insert here a different
treatment for general calls, if
these are relevant.

It’s a Read - (requesting slave
transmit) .

; It is a Write (slave should receive the message).

H Check if message is for us

SRcv2: CJINE A,MYADDR, GoIdle
MOV R1, #SRcvBuf
MOV R2, #RbufLen+1
SJIMP SRcv3

SRcvSto: MOV @R1,A
Inc R1

SRcv3: ACALL AckRcv8
JNB DRDY, SRcvEnd
DJINZ R2, SRcvSto

i

i

If not my address - ignore the
message.
Set receive buffer address.

Store the byte
Step address.

Exit loop -end reception.
Go to store byte if buffer not full.

; Too many bytes received - do not acknowledge.

MOV MSGSTAT, #SRLNG

ACALL SLnRCvdR
SJIMP GolIdle

i
i

i

Notify main that (as slave) we
have received too long a message.

; Handle new data - slave event routine.

i Received a byte, but not DRDY - check if a legitimate message end.

SRcvEnd: CJINE RO, #7, SRCVErr

; Received a complete message

MOV MSGSTAT, #SRCVD
MoV A,R1
CLR C

SUBB A, #SRcvBuf
ACALL SRCvdR

SJIMP SMsgEnd
; It is a Read message, check if for
S1vTx: NOP
STx2: CJINE A,MYADDR, GoIdle
MOV I2DAT, #0
JNB ATN, $
June 1993

i

us.

If bit count not 7, it was not
a Start or a Stop.

Calculate number of bytes received

number of bytes in ACC
Handle new data - slave event routine.

Not for us.
Acknowledge the address.
Wait for attention flag.

195

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

STx1lp: MOV

SRCVErr: MOV

StxErr: MOV
SMsgEnd: JB

SMsgEnd2:
AJMP

DRDY, SMsgEnd

R1, #STxBuf

A,@R1

R1

XmByte

DRDY, SMsgEnd
RDAT, STx1p

I2CON, #BCDR+BIDLE
MSGSTAT, #STXED
STXedR

Dismiss

MSGSTAT, #SRERR
SRErrR

SMsgEnd
MSGSTAT, #SRERR
SRErrR

MASTER, SMsgEnd2
STR, GoSlave

Dismiss

; End of Slave message processing

GoIdle:
AJMP

i
i

GoMaster:

Dismiss

; Send address & R/W~ byte

MOV
MOV
MoV

JB

ACALL

GM2: AJMP

GM3: JB
JB
AJMP

R1, #MasBuf
R2,MASTCNT
A, DESTADRW

SUBADD, GoMas?2
XmAddr

DRDY, GM2
ARL, GM3
AdTxArl

RDAT,Noslave
ACC.0, MRcv
MTx

; Handling subaddress case:

GoMas2: NOP
CLR

GM4 : AJMP

GM5: JB
Mov
ACALL
JNB
JB
JB
MOV
JNB

; Read message,

June 1993

ACC.0
XmAddr
DRDY, GM4
ARL, GM5
AdTxArl

RDAT, Noslave
A, DESSUBAD
XmByte

DRDY, SMsgEnd2
ARL, SMsgEnd2
RDAT, NoAck

A, DESTADRW
ACC.0, MTx

Exception - unexpected Start

or Stop before the Ack got out.
Start address of transmit buffer.
Get byte from buffer

Byte Tx not completed.
Byte acknowledge, proceed trans.
Master Nak’ed for msg end.

Slave transmitted event routine.

Flag bus/protocol error
Slave error event routine.

Flag bus/protocol error

If it was a Start, be Slave

Master buffer address

of bytes, to send or rcv
Destination address (including
R/W~ byte).

Branch if subaddress is needed.

Arbitration loss while transmitting
the address.

No Ack for address transmission.
Check R/W~ bit

Subaddress needed. Address in ACC.
Force a Write bit with address.

Arbitration loss while transmitting
the address.

No Ack for address transmission.

Transmit subaddress.

Arbitration loss (by Start or Stop)
Arbitration loss occurred.

Subaddress transmission was not ack’ed.
Reload ACC with address.

It’s a Write, so proceed

by sending the data.

needs rp. Start and add. retransmit.

196

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

MOV I2CON, #BCDR+BXSTR ;
JNB ATN, $
MOV I2CON, #BCDR ;
i
JNB ATN, $;
JNB ARL,GM6
AJMP MArlEnd i
GM6: ACALL XmAddr i
H
JNB DRDY, GM7
JNB ARL, GM8
GM7: AJMP AJTxArl H
H
GM8: JB RDAT,Noslave ;
SJIMP MRcv H
; A Write message. Master transmits the
MTx: NOP
MTxLoop: MOV A,@R1 H
INC R1 H
ACALL XmByte
JNB DRDY, SMsgEnd?2 ;
JB ARL, SMsgEnd2 H
JB RDAT, NoAck
DJINZ R2,MTxLoop i
MOV MSGSTAT, #MTXED ;
i
SJIMP MTxStop
NoSlave: MOV MSGSTAT, #MTXNOSLV
SJIMP MTxStop
NoAck: MOV MSGSTAT, #MTXNAK
SJMP MTxStop

; Master receive - a Read frame

MRcv: ACALL ClaRcv8 i
SJIMP MRcv2

MRcvLoop: ACALL AckRcv8

MRcv2: JNB DRDY, MArl ;
MOV @R1,A ;
INC R1 H
DJINZ R2,MRcvLoop

; Received the desired number of bytes -
MOV I2DAT, #80h
JNB ATN, $
JNB DRDY, MArl
MOV MSGSTAT, #MRCVED
SJIMP MTxStop H

; Conclude this Master message:

; Send Stop, or a Repeated Start
MTxStop: JNB RPSTRT, MTxStop2 i
i
MoV I2CON, #BCDR+BXSTR i
SIMP MTxStop3
MTxStop2: MOV C, SETMRQ H
MOV MASTRQ, C i
MoV I2CON, #BCDR+BXSTP H
MTxStop3: JNB ATN, $ H
Mov I2CON, #BCDR i
i
i
JNB ATN, $ i
JB ARL,MarlEnd ;
June 1993

Send Repeated Start.

Clear useless DRDY while preparing
for Repeated Start.
expecting an STR.

oops - lost arbitration.
Retransmit address, this time with the
Read bit set.

Arbitration loss while transmitting
the address.

No Ack - the slave disappeared.
Proceed receiving slave’s data.

data.

Get byte from buffer.
Step the address.

Arbitration loss (by Start or Stop)
Arbitration loss.

Loop if more bytes to send.

Report completion of buffer
transmission.

Receive a byte.

Other’s Start or Stop.
Store received byte.
Advance address.

send Nack.

Go to send Stop or Repeated Start.

Check if Repeated Start needed
Around if not RPSTRT.
Send Repeated Start.

Set new Master Request if demanded
by SETMRQ bit of MASCMD.
Request the HW to send a Stop.

Wait for Attention

Clear the useless DRDY, generated
by SCL going high in preparation
for the Stop or Repeated Start.
Wait for ARL, STP or STR.

Lost arbitration trying to send
Stop or a ReStart.

197

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

; Master is done with this message. May proceed with new messages, if any,
; or exit.

ACALL MastNext Master Event Routine. May Prepare
the pointers and data for the

next Master message.

JNB MASTRQ, MMsgEnd ; Go end service routine if MASTRQ
; does not indicate that the master
; should continue (was set according
; to SETMRQ bit, or by MastNext).
JNB STR, MMsgEnd Return from the ISR, unless Start

(avoid danger if we do not return:
if there was a Stop, the watchdog
is inactive until next Start).

AJMP GoMaster Loop for another Master message

MMsgEnd: End of Master messages,

SJIMP Dismiss
; Terminate mastership due to an arbitration loss:
MArl:

JNB STR,MArl2 ; If lost arbitration due to other
; Master’s Start, go be a slave.
AJMP GoSlave

Marl2:

AJMP Dismiss
Switch from Master to Slave due to arbitration loss after completing
transmission of a message. The MASTRQ bit was cleared trying to write a
Stop, and we need to set it again on order to retry transmission when the
bus gets free again.

MArlEnd:
SETB MASTRQ ; Set Master Request - which will get
; into effect when we are done as a
; slave.
ACALL MORERR ; i INCREASE ERROR COUNT

AJMP MArl
; Handling arbitration loss while transmitting an address

AdTxArl: JB STR,MArl ; Non-synchronous Start or Stop.
JB STP,MArl

; Switch from Master to Slave due to arbitration loss while transmitting
; an address - complete receiving the address transmitted by the new Master.

CJINE RO, #0,AdTxArl2

Arl on last bit of address

(RO is 0 on exit from XmAddr).

The 1lsb sent, in which arl occurred
must have been 1. By decrementing

; A we get the address that won.

DEC A

SJIMP AdAr3

AdTxArl2:
RR A ; Realign partially Tx’ed ACC
MOV R1,A ; and save itin R1
MOV A,RO ; Pointer for lookup table
MOV DPTR, #MaskTable
MovC A, @A+DPTR
ANL A,R1 Set address bits to be received,

and the bit on which we lost
arbitration to 0

Now we are ready to receive the rest
of the address.

June 1993 198

Philips Semiconductors

Application note

Using the P82B715 I12C extender on long cables

AN444

AdAr3:

MaskTable:

MOV I2CON, #BCXA+BCARL ; Clear flags and release the clock.

ACALL RBit3 Complete the address using reception

subroutine.

JB DRDY, AdAr3 Around if received address OK
AJMP SMsgEnd ; Unexpected Start or Stop - end
; as a slave.
AJMP STStRW ; Proceed to check the address
; as a slave.
DB 0ffh, 7Eh, 3Eh, 1Eh, OEh, 06h, 02h, 00h, ; O0ffh is dummy

; End I2C Interrupt Service Routine:

Dismiss:

i

i

ACALL I2CDONE

MOV I2CON, #BCARL+BCSTP+BCDR+BCXA+BIDLE
CLR TIRUN

POP ACC

MOV R2,A

POP ACC

MOV R1,A

POP ACC

MOV RO,A

POP ACC

POP PSW

SETB EI2

RET ; Return from I2C interrupt Service Routine

PR R R R R R R E g

Byte Transmit and Receive Subroutines

GREHFF KKKk ke ok ko ko ko k ok ko ko ko ko ko ko k ko k ko ko k ok k ko ko ko k ok k ok ok ko ko k ok ok ok ok k ok k ok

; XmAddr:
; XmByte:

XmAddr :

XmByte:
XmBit:
XmBit2:

XmBex :

ClsRcv8

AckRcv8

ClaRcv8

ClsRcv8:

June 1993

Transmit Address and R/W~
Transmit a byte

MOV I2DAT,A ; Send first bit, clears DRDY.
MOV I2CON, #BCARL+BCSTR+BCSTP
; Clear status, release SCL.
MOV RO, #8 ; Set RO as bit counter
SJIMP XmBit2
MOV RO, #8
MOV I2DAT,A ; Send the first bit.
RL A ; Get next bit.
JNB ATN, $; Wait for bit sent.
JNB DRDY, XmBex ; Should be data ready.
DJINZ RO, XmBit ; Repeat until all bits sent.
MOV I2CON, #BCDR+BCXA ; Switch to receive mode.
JNB ATN, $; Wait for acknowledge bit.
; flag cleared.
RET

Byte receive routines.

clears the status register (from Start condition)

and then receives a byte.

Sends an acknowledge, and then receives a new byte.

If a Start or Stop is encountered immediately after the
ack, AckRcv8 returns with 7 in RO.

clears the transmit active state and releases clock
(from the acknowledge) .

A contains the received byte upon return.
RO is being used as a bit counter.

MoV I2CON, #BCARL+BCSTR+BCSTP+BCXA
;Clear status register.

JNB ATN, $

JNB DRDY, RCVex

SJIMP Rcv8

199

Philips Semiconductors

Application note’

Using the P82B715 I2C extender on long cables

AN444

AckRcv8:

ClaRcv8:

Rcv8:

RBit:
RBit2:

RBit3:

RCVex:
RCVerr:

DJINZ
MoV
RLC
RET

MOV
RET

I2DAT, #0 ; Send Ack (low)

ATN, $

DRDY, RCVerr ; Bus exception - exit.

I2CON, #BCDR+BCXA ; clear status, release clock

;from writing the Ack.

ATN, $

RO, #7 ; Set bit counter for the first seven
; bits.

A ; Init received byte to 0.

A, I2DAT ; Get bit, clear ATN.

A ; Shift data.

ATN, $; Wait for next bit.

DRDY, RCVex ; Exit if not a data bit (could be Start/
; Stop, or bus/protocol error)

RO,RBit ; Repeat until 7 bits are in.

C,RDAT ; Get last bit, don’t clear ATN.

A ; Form full data byte.

RO, #9 ; Return non legitimate bit count

T R R R R R s e e

i

Timer I Interrupt Service Routine
I2C us Timeout

R R R R R e e e e e e s s s
i

; In addition to reporting the timeout in MSGSTAT, we update a failure
TITOCNT. This allows different types of timeout handling by the
; main program.

; counter,

TIISR:

TI1l:
TI2:
TI4:

CLR
MoV
MoV

MOV
ACALL
ACALL

SETB
ACALL

MOV

AJMP

MASTRQ ; "Manual” reset.
I2CON, #BXSTP ;
I2CON, #BCXA+BCDR+BCARL+BCSTR+BCSTP

MSGSTAT, #TIMOUT ; Status Flag for Main.
MORERR ;i INC TITOCNT

RECOVER

CLRTI ; Clear TI interrupt flag.

XRETI Clear interrupt pending flag (in
order to re-enable interrupts).
Realign stack pointer, re-doing
possible stack changes during

the I2C interrupt service routine.
TimerI interrupts in other ISR’s
were not allowed !

Go back to the I2C service routine,
in order to return to the (main)
program interrupted.

SP, StackSave

Dismiss

KRR Kk Kk kR R ko Kk kK Rk kR Kk ok ok ok ok ok ok Sk Rk ok ko Kk

i

Bus recovery attempt subroutine

R
i

RECOVER:

DLY5:

June 1993

CLR
CLR
uterv
CLR
SETB

MoV
NOP
NOP
NOP
DJINZ
CLR
SETB

SETB
SETB
MOV

EA
MASTRQ ; ”"Manual” reset.
I2CON, #BCXA+BIDLE+BCDR+BCARL+BCSTR+BCSTP
SLAVEN ; Non I2C TimerI mode
TIRUN ; Fire up TimerI. When it overflows, it
; will cause I2C interface hardware reset.
R1,#0ffh
R1,DLYS
TIRUN
CLRTI
SCL ; Issue clocks to help release other devices.
SDA
R1, #08h

200

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

RC7: CLR SCL

DB 0,0,0,0,0

SETB SCL

DB 0,0,0,0,0

DJINZ R1,RC7

CLR SCL

DB 0,0

CLR SDA

DB 0,0

SETB SCL

DB 0,0,0,0,0

SETB SDA

DB 0,0,0,0,0 ; Issue a Stop.
Rex: MoV I2CON, #BCXA+BCDR+BCARL+BCSTR+BCSTP ; clear flags

SETB EA

RET

PR R R R

;
i

Main Program

R e

H
i
i
i
H
i

Message ping pong game. Each message is transmitted by

a processor that is a master on the I2C bus, and it contains one byte

of data. A processor that receives this data byte as a slave increments
the data by one and transmits it back as a master. The data received is
confirmed to be a one increment of the data formerly sent, unless

it is a "reset” value, chosen to be 00h.

The two participating processors have similar code, where the node
address of the second processor is the destination address of this

one, and vice versa.

The first data byte each processor tries to send is 00h. One of the
processors will acquire the bus first, and the second processor that will
receive this ”resetting” 00h will not attempt tp confirm it against an
expected value. It will simply increment and transmit it. Subsequent
receptions will be confirmed against the expected value, until 0ffh data
bytes are sent and the game is effectively reset by the 00h resulting from
the next increment.

A toggling output (TogLED) tells the outer world that the “ping pong”
proceeds well. If something unexpected happens we temporarily activate
another output, ErrLED.

The different tasks of the code are performed in a combination of main-
line program and event routines called from the I2C interrupt service
routine.

Initial set-ups:
Load CT1,CTO bits of I2CFG register, according to the clock
crystal used.
Load RAM location MYADDR with the I2C address of this processor.
We load these values out of ROM table locations (R_CTVAL and R_MYADDR) .
One may, instead, load with a MOV <immediate> command.

; iReset: MOV SP,#07h ;Set stack location.
RESET: CLR A
MOV DPTR, #R_CTVAL
MovC A, @A+DPTR
MOV I2CFG,A ; Load CT1,CTO (I2C timing, crystal
; dependent) .
CLR A
MOV DPTR, #R_MYADDR
MOovC A, @A+DPTR ; Get this node’s address from ROM table
MOV MYADDR, A ; into MYADDR RAM location.
i CLR OnLED

June 1993 201

Philips Semiconductors Application note

Using the P82B715 I2C extender on long cables AN444
; iReset2: CLR ErrLED ; Flash LED.
RESET2: ACALL LDELAY
HH SETB ErrLED
CLR SErrFLAG
CLR TRQFLAG
MOV FAILCNT, #50h
H SETB TogLED
MOV TOGCNT, #050h ; Initialize pin-toggling counter

; Enable slave operation.

; The Idle bit is set here for a restart situation - in normal

operation this is redundant, as this bit is set upon power_up reset.
MOV I2CON, #BIDLE ; Slave will idle till next Start.
SETB SLAVEN ; Enable slave operation.

Enable interrupts.
; This is necessary for both Slave and Master operations.

SETB ETI ; Enable timer I interrupts.
SETB EI2 ; Enable I2C port interrupts.
SETB EA ; Enable global interrupts.

; Set up Master operation.

MoV MASCMD, #0h ; "Regular” master transmissions.

MOV DPTR, #PongADDR

CLR A

MOvC A,@A+DPTR

MOV DESTADRW, A ; The partner address. The LSB is

; low, for a Write transaction.

MOV MASTCNT, #01h ; Message length - a single byte.
PPSTART:

MOV MasBuf, #00h

; ”"Ping” transmission:

PP2:
SETB TRQFLAG
SETB MASTRQ
MOV R1,#0ffh
PP22: JNB TRQFLAG, PP3 ; Transmitted OK
DJINZ R1,PP22
MFAIL1: DJINZ FAILCNT, PP2
ACALL MORERR ; ; INCREMENT TITOCNT
ACALL RECOVER
SJIMP Reset2

; ”"Pong” reception:

PP3: MOV RO, #0ffh ; Software timeout loop count.

PP31: MOV R1,#0ffh -

_PP32: JB TRQFLAG, PP2 ; Rcvd ok as slave, go transmit.
JB SErrFLAG, PP5

DJINZ R1,PP32
DJINZ RO, PP31

PPTO: ACALL RECOVER ; Software timedut.
AJMP Reset2

;iPP5: CLR ErrLED ; Receive error.
HE ACALL LDELAY
i SETB ErrLED
PP5: CLR SErrFLAG

AJMP PPSTART
LDELAY: MoV R2,#030h ;LONG DELAY
LDELAY1: MOV R1,#0ffh

DJINZ R1,$

DJINZ R2,LDELAY1

RET

June 1993 202

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

R s T e

; Slave and Master Event Routines.

R R R R s 22

; Invoked upon completion of a message transaction.

;7 This is the part of the application program actually dealing
; with the data communicated on the I2C bus, by responding to
; new data received and/or preparing the next transaction.

Slave Event Routines

; These routines are invoked by the I2C interrupt service routine when a
;i message transaction as a slave has been completed. Our “application”

;i reacts to a message received as a slave with the routine SRCvdR.

;i The calls that indicate erroneous reception are treated the same way as
;i erroneous data reception in the ”“ping pong” game.

;i SRcvdR
; Invoked when a new message has been received as a Slave.
SRcvdR: NOP
MOV A, SRcvBuf
JINZ SR2
MOV MasBuf, #01h ; It was ping-pong reset value
SJIMP SR3
SR2: INC MasBuf ; The expected data.
CJINE A,MasBuf, ErrSR
INC MasBuf ; Data for next transmission - the data
; received incremented by 1.
H A successful two way data exchange. Let the outside world know by
H toggling an output pin driving a LED. We actually toggle only
H when a number of such exchanges is completed, in order to
; slow down the changes for a good visual indication.
DJINZ TOGCNT, SR3
i CPL TogLED ; Toggle output
XRL TITOCNT, #80H ; iTOGGLE MSB LED
MoV TOGCNT, #050h H
SETB PSW.3 ;RS TO 1
MOV LED, @RO ; iRAM POINTED TO BY RO
CLR PSW.3 ;RS BACK TO 0O
SR3: CLR SErrFLAG
SETB TRQFLAG ; Request main to transmit
RET
ErrSR: SETB SErrFLAG
RET
; SLnRcvdR
H Invoked when a message received as a Slave is too long
H for the receive buffer.
; STXedR
H Invoked when a Slave completed transmission of its buffer.
H We do not expect to get here, since we do not plan to have
H in our system a master that will request data from this node.
H
; SRErrR
; Slave error event subroutine.
; In most applications it will not be used.
SLnRcvdR:
STXedR:
SRErrR: JMP ErrSR

June 1993 203

Philips Semiconductors

Application note

Using the P82B715 I12C extender on long cables

AN444

MastNext - Master Event Routine.

Invoked when a Master transaction is completed, or terminated
"willingly” due to lack of acknowledge by a slave.

MastNext:
MOV A,MSGSTAT
CJINE A, #MTXED, MN1
MoV FAILCNT, #50h
CLR TRQFLAG
RET
MN1:
RET
; I2CDONE
; Called upon completion of the I2C interrupt service routine.
i In this example it monitors exceptions, and invokes the bus
; recovery routine when too many occurred.
I2CDONE:
MOV A,MSGSTAT
CJINE A, #NOTSTR, I2CD1
ACALL MORERR ; ; INCREMENT TITOCNT
DJINZ FAILCNT, I2CD1
MOV FAILCNT, #01h ; Too many ”illegal” i2c interrupts
CLR EI2 ; — shut off.
I2CD1: RET

R KRR A KRR K KRR KRR KRR K KKK KA KKK R K KRR KR KR KRR KKK KRR KRR AR KRR KAk AR KA KKKk Kk

; I2C Communications Table:

SRR KRR AR R kKR K kKRR KRR KRR KRR KRR KRR KR IR KR I KR KR KR KKK AR AR IR IR R AR AKX ARk Ak hk

We used table driven values for clarity. One may use immediates to load
these values and save several lines of code.

Contents is used in the beginning of the main program to load

RAM location MYADDR and the I2CFG register.

The node address, in R_MYADDR, is application specific, and unique for
each device in the I2C network.

R_CTVAL depends on the crystal clock frequency.

R_MYADDR : DB 4Ah ; This node’s address
; i NOTE THAT R_MYADDR AND PongADDR
; iMUST BE SWITCHED ON THE OTHER
;:'751

R_CTVAL: DB 02h ; CT1l, CTO bit values

PR e

; Application Code Definitions

PR R e

PongADDR: DB 4Eh ; The address of the ”"partner” in
; the ping-pong game.
I2CMON THIS PROGRAM RUNS THE MONITOR ON

TEST THE I2C DRIVER CHIP.

H
H THE SMALL TEST BOARD DESIGNED TO
i
H IT USES A ’‘751.

LED EQU P3
LDEL EQU 022H
HDEL EQU LDEL + 1

June 1993 204

Philips Semiconductors

Application note

Using the P82B715 I2C extender on long cables

AN444

SWITCH
TOG
RNAME

ONLYAD:
HIWAIT:

SDELAY :

STAYLO:
HDELAY :

DONE:

i
MORERR :

NOUP:

June 1993

EQU
EQU
EQU

: MOV

SETB
CLR
JB
SETB

JB
MoV
MOV
DJINZ
DJINZ
JB
MOV
MOV

DJINZ
DJINZ

MOV

Mov

CLR
AJMP

PUSH
MOV
ANL
XRL
Jz
INC
SETB
MOV
CLR
POP
RET

Pl
P0.2
RO

SP,
PSW.3
PSW.1
TOG,
PSW.1
TOG,
TOG,
LDEL,
HDEL,
LDEL,
HDEL,
TOG,
RNAME,
LED,

PSW.1,
TOG,
LDEL,
HDEL,
TOG,
@RNAME,

LED,

PSW.3
RESET

A,

NOUP
TITOCNT
PSW.3
LED,
PSW.3
ACC

; TOGGLE
;RO RAM

#09H

ONLYAD

ONLYAD
HIWAIT
#0

#0

SDELAY
SDELAY
HIWAIT
SWITCH
@RNAME

DONE

STAYLO
HDELAY
HDELAY
STAYLO
SWITCH

RNAME

#7FH
TITOCNT
#7FH

@RO

SWITCH
POINTER

;i SP=09, STARTS AT 0AH
;RS = 01

;PSW.1 FLAG=0

;IF TOG 1, PSW1=0
;WRITE DESIRED

;WAIT FOR HI

iNOW WAIT FOR LOW
;DELAY TIMER

; DELAY LOOP

;UPPER DELAY

;FALSE ALARM,GO BACK
;VALID HI TO LO
;DISPLAY CONTENTS OF
; RAM OF RNAME
;PSW1 FLAG, 0=DONE
;NOW WAIT FOR HI

; LDEL=HDEL=0

;FALSE ALARM

;i SUCCESSFUL LO TO HI
; SWITCH TO RAM
;DISPLAY WHICH RAM

; LOCATION FOR SWITCH
;RS BANK BACK TO 0

; STARTS PING PONG

" ; ; INCREMENT TITOCNT

; iSTOP AT 7F

iiRS TO 1
; i DISPLAY NEW TITOCNT
;iRS BACK TO 0

205

Philips Semiconductors Application note
L

PLM51 I2C software interface IIC51 (version 0.5) ETV/AN89004

X
Author: R.C.J. Brink, Eindhoven

1. INTRODUCTION

1.1. Purpose
This document is a user manual for the 12C software module 1IC51. It is intended for Intel PLM51 users who need to control an I2C bus. This
document assumes some basic knowledge about I12C and Intel PLM51.

1.2. Scope

1IC51 is a software module to provide an Intel PLM51 user with a set of procedures to control a bi-directional 12C bus. These procedures have
been coded'in Intel ASM51 and have been optimized for speed. IIC51 supports all common used 12C master transmitter and master receiver
protocols. Each different protocol corresponds to one of the procedures in 1IC51. 1IC51 is available in two different versions:

IIC51S:
1IC51S is a module for singlemaster 12C to be used on microcontrollers of the 8XC51 family. It directly controls the microcontroller I/O pins by
software without the need of any specific hardware. No other [2C masters are allowed on the bus. Note that the electrical characteristics of
this microcontroller family are not conform the 12C specifications.

ICs1M:
IIC51M is a module for multimaster 12C to be used on microcontrollers of the PCB8XC552/C652 family. It makes use of the built-in 12C
interface hardware (SIO1) of these microcontrollers. Since this hardware is a multimaster interface, other I12C masters are allowed on the
bus.

All 12C transfer procedures in 11C51S are fully software interface compatible with [IC51M. This allows a single PLM51 program using 12C to be
written for both mentioned microcontroller families.

1.3. Definitions, Acronyms and Abbreviations

12C Inter-IC bus

PLM51 High level Program Language for 8051 family Microcontrollers
ASM51 Assembly Language for 8051 family Microcontrollers
RL51 Relocating Linker for 8051 family Microcontrollers

S 12C Message Start Condition

P 12C Message Stop Condition

A 12C Message Acknowledge

N 12C Message Negative Acknowledge

Sivw 12C Message Slave Address + Write'

SIVR 12C Message Slave Address + Read

Sub 12C Slave Subaddress

NV-Memory 12C Controlled Non Volatile Memory (E2PROM)

1.4. References
5. 12C Specification
12C-bus compatible ICs

Philips Components Data Handbook IC12a 1989
6. PL/M-51 User’s Guide for DOS Systems

Intel Corporation 1986
7. MSC-51 Macro Assembler User’s Guide for DOS Systems

Intel Corporation 1986
8. MSC-51 Utilities User’s Guide for DOS Systems

Intel Corporation 1986

9. Single-chip 8-bit microcontrollers PCB83C552/PCB80C552, PCB83C652/PCB80C652 etc.
12C-bus compatible ICs)

Philips Components Data Handbook IC12a 1989
10. Single-chip 8-bit microcontroller PCB80C51
Integrated circuits Book IC14 1987

May 1989 206

Philips Semiconductors Application note

PLM51 I2C software interface IIC51 (version 0.5) ETV/AN89004

2. GENERAL DESCRIPTION

2.1. Perspective
1IC51 is designed for use in stand-alone microcontroller I2C systems. It is mainly written to provide a standard set of procedures for computer
controlled television/teletext concepts based on 8051 family microcontrollers.

2.2. Functions
1IC51 contains the following functions:
- Initialisation of the I2C interface (software and hardware)

— Transfer of I2C messages to and from an 12C slave device

— Error detection

— Automatic retrying if an error occurs during a transfer (up to 5 attempts)
— Error recovery if the bus is held by a slave device that is out of bit-sync
~ Optional slave receiver/transmitter function (IIC51M only)

2.3. User Characteristics
1iIC51 is designed to be an easy to use package. All needed code and data is defined in a single object module (IIC51M.OBJ or lIC51S.0BJ).

The PLM51 user needs only to link this module to his own application object modules, using Intel's RL51. Procedures and data of concern to the
user can be declared EXTERNAL by including the file 1IC51.DCL.

2.4. General Constraints

1IC51 is coded for and translated by the Intel MSC-51 Macro Assembler. It is tested together with Intel PLM51 modules. Intel utilities used for
testing:

— MSC-51 Macro Assembler, ASM51.EXE, Version V2.3

— PL/M-51 Compiler, PLM51.EXE, Version V1.2 and V1.3

— MSC-51 Relocator and Linker, RL51.EXE, Version V3.1
Development is done on an IBM-PC/AT running DOS.

1IC51S needs:

— 350 Bytes CODE (approx.)

- 6 Bytes DATA

— 1 Byte Bit-Addressable DATA
- 1Bit

LIC5MS needs:

— 400 Bytes CODE (approx.)

— 6 Bytes DATA

— 1 Byte Bit-Addressable DATA
- 1Bit

— Exclusive use of Register Bank 1

May 1989 207

Philips Semiconductors) Application note

PLM51 I12C software interface 1IC51 (version 0.5) ETV/AN89004

3. FUNCTIONAL DESCRIPTION

3.1. Master Mode Functions
This section describes the available functions in 1IC51 on a procedure by procedure basis.

Each procedure must be declared EXTERNAL by the PLM51 user. In this declaration the user can specify the type returned by each procedure.
All procedures (except Init_lIC) can return a BIT or a BYTE (depending on the chosen EXTERNAL declaration). The BIT or BYTE returned is 0
if the I2C transmission was successful. If the user decides to declare a procedure untyped, the result of the previous I2C transmission can
always be checked by examining the static BIT variable 1IC_Error. Note that typed procedures must be called using an expression. If the result
of an I2C procedure is to be ignored, a dummy assignment must be done for a typed procedure. An untyped procedure can be called by the
PLM51 CALL statement, without any additional overhead. The examples in the following section assume the procedures to be declared
untyped.

Note that the least significant bit bof all slaveaddresses passed to the 12C procedures must be 0

3.1.1. Init_liC
Declaration:
Init_TIIC:
PROCEDURE (Own_Slave_Address) EXTERNAL ;

DECLARE (Own_Slave_Address) BYTE ;
END ;

Description:

Init_IIC must be called once after reset, before any other procedure is used. It initialises all 12C internal static data and hardware. The
Own_Slave_Address is passed to Init_IIC for the optional slave function in a multimaster 12C system (IIC51M). In a singlemaster 12C system
(IC518), the Own_Slave_Address is ignored. Note that Init_IIC does not effect the global interrupt enable flag (EA). IIC51M requires the user to
enable interrupts afterwards (see example).

Example:
CALL Init_IIC (54h) ;
ENABLE ; /*Enable Interrupts; EA = 1 */

3.1.2. liC_Test_Device
Declaration:

IIC_Test_Device:
PROCEDURE (Slave_Address) [BIT | BYTE] EXTERNAL ;

Description:
IIC_Test_Device just sends the slaveaddress on the I2C bus. It can be used to check the presence of a device on the I2C bus.
12C Protocol:

n (Device is Present, lIC_Error=0)

OR

Eﬂ (Device is Not Present, [IC_Error=1)

Exgmp]g
DECLARE IIC_Error BIT EXTERNAL ;

CALL IIC_Test_Device (8Ch) ;
IF (IIC_Error) THEN

“Device is Not Present Handling”
ELSE

“Device is Present Handling”

May 1989 208

Philips Semiconductors Application note

PLM51 12C software interface IIC51 (version 0.5) ETV/AN89004

3.1.3. 1liIC_Write
Declaration:
IIC_Write:

PROCEDURE (Slave_Address, Count, Source_Ptr) [BIT | BYTE] EXTERNAL ;
DECLARE (Slave_Address, Count, Source_Ptr) BYTE ;

END ;
Description:
1IC_Write is the most basic procedure to write a message to a slave device.
I2C Protocol:
L = Count

D1(0..L-1] BASED by Source_Ptr

LSl S1lvw |A| D1[0]

A|D1[l] lAI |A|D1[L—1] |A|Pl

Example:
DECLARE Data_Buffer (4) BYTE ;

CALL IIC_Write (0C2h, LENGTH (Data_Buffer), .Date_Buffer) ;

3.1.4. 1IC_Write_Sub
Declaration:
IIC_Write_Sub:

PROCEDURE (Slave_Address, Count, Source_Ptr, Sub_Address) [BIT | BYTE] EXTERNAL ;
DECLARE (Slave_Address, Count, Source_Ptr, Sub_Address) BYTE ;

END ;

Description:

1IC_Write_Sub writes a message preceded by a subaddress to a slave device.

12C Protocol:

L = Count

Sub = Sub_Address

D1({0..L-1] BASED by Source_Ptr
//

[s] siw [a] sw [a] oat0) [a] sarms 2] .00 [a] sesr [a]]
/7

Example:
DECLARE Data_Buffer (8) BYTE ;

CALL IIC_Write_Sub (48h, LENGTH (Data_Buffer), .Date_Buffer, 2) ;

3.1.5. lIC_Write_Sub_SWinc
Declaration:
IIC_Write_Sub_SWInc:
PROCEDURE (Slave_Address, Count, Source_Ptr, Sub_Address) [BIT] BYTE] EXTERNAL ;

DECLARE (Slave_Address, Count, Source_Ptr, Sub_Address) BYTE ;
END ;

Description:

Some 12C devices addressed with a subaddress do not automatically increment the subaddress after reception of each byte.
11IC_Write_Sub_SWiInc can be used for such devices the same way IIC_Write_Sub is used. IIC_Write_Sub_SWiInc splits up the message in
smaller messages and increments the subaddress itself.

May 1989 209

Philips Semiconductors Application note

PLM51 I2C software interface 1IC51 (version 0.5) ETV/AN89004

12C Protocol;
L = Count
Sub = Sub_Address

D1[0..L-1] BASED by Source_Ptr

[o] s [a] oo

NECHBE

[5o [+ oo [o] mwr [a]7]

|S| Slvw IA | Sub+L-1 |A ! D1[L-1] IA| P|

DECLARE Data_Buffer (6) BYTE ;

CALL IIC_Write_Sub_SWInc (80h, LENGTH (Data_Buffer), .Date_Buffer, 0) ;

3.1.6. lIC_Write_Memory
Declaration:

IIC_Write_Memory:
PROCEDURE (Slave_Address, Count, Source_Ptr, Sub_Address) [BIT| BYTE] EXTERNAL ;
DECLARE (Slave_Address, Count, Source_Ptr, Sub_Address) BYTE ;
END ;

Description:

12C Non-Volatile Memory devices (such as PCF8582) need an additional delay after writing a byte to it. IlC_Write_Memory can be used to write
to such devices the same way IIC_Write_Sub is used. IIC_Write_Memory splits up the message in smaller messages and increments the
subaddress itself. After transmission of each small message a delay of 40 milliseconds is inserted.

12C Protocol:
L = Count
Sub = Sub_Address

D1[0..L-1] BASED by Source_Ptr

(o] o [o] oo

AI D1[0] lAlPJ < Delay 40 ms >

|s| S1lvW IA! Sub+1 |A| D1[1] |A|P| < Delay 40 ms >

CALL IIC_Memory (OAOh, LENGTH (Data_Buffer), .Date_Buffer, OFOh)

i

May 1989 210

Philips Semiconductors Application note

PLM51 I2C software interface 1IC51 (version 0.5) ETV/AN89004

3.1.7. lIC_Write_Sub_Write
Declaration:
IIC_Write_Sub_Write:
PROCEDURE (Slave_Address, Countl, Source_Ptrl, Sub_Address, Count2, Source_Ptr2)
[BIT| BYTE] EXTERNAL ;

DECLAR (Slave_Address, Countl, Source_Ptrl, Sub_Address, Count2, Source_Ptr2) BYTE ;
END ;

Description:
1IC_Write_Sub_Write write 2 data blocks preceded by a subaddress in one message to a slave device. This procedure can be used for devices

that need an extended addressing method, without the need to put all data into one large buffer. Such a device is the ECCT (I2C controlled
teletext device; see example).

I2C Protocol:

L = Countl

M = Count2

Sub = Sub_Address

D1[0..L-1] BASED by Source_Ptril
D2[0..M-1] BASED by Source_Ptr2

//
SI S1lviw IAI Sub IAI D1([0] IA[D1[1] |A| |A| D1[L-1]]AI
7/
/7
D2[0] IA[D2[1] |Al Al D2 [M-1] IA[PI
//

Example:
PROCEDURE Write_CCT_Memory (Chapter, Row, Column, Data_Buf, Data_Count) ;
DECLARE (Chapter, Row, Column, Data_Buf, Data_Count) BYTE;

/*
The extended address (CCT-Cursor) is formed by Chapter, Row and Column. These
three bytes are written after the subaddress (8) followed by the actual data which
will be stored relative to the extended address.

*/

CALL IIC_Write_Sub_Write (22h, 3, .Chapter, 8, Data_Buf, Data_Count) ;

END Write_CCT_Memory ;

3.1.8. lIC_Read
Declaration:
IIC_Read:

PROCEDURE (Slave_Address, Count, Dest_Ptr) [BIT | BYTE] EXTERNAL ;
DECLARE (Slave_Address, Count, Dest_Ptr) BYTE ;

END ;

ICC_Read is the most basic procedure to read a message from a slave device.

I2C Protocol:

M = Count

D2[0..M-1] BASED by Dest_Ptr
/7

le S1vR IAlnz[ol |A|D2[l] ’AI |A|D2[M-l] ’N|P]
//

Example:

DECLARE Data_Buffer (4) BYTE ;

CALL IIC_Read (0B4h, LENGTH (Data_Buffer), .Data_Buffer) ;

May 1989 21

Philips Semiconductors Application note

PLM51 12C software interface [IC51 (version 0.5) 'ETV/AN89004

3.1.9. lIC_Read_Status
Declaration:

IIC_Read_Status:
PROCEDURE (Slave_Address, Dest_Ptr) [BIT | BYTE] EXTERNAL ;
DECLARE (Slave_Address, Dest_Ptr) BYTE ;
END ;

Description:

Alot of I2C devices have only a one status byte that can be read via I2C. IIC_Read_Status can be used for this purpose. lIC_Read_Status
works the same as IIC_Read but the user does not have to pass a count parameter.

12C Protocol:
M = Count
Status BASED by Dest_Ptr

|S| S1vR |A| Status

v
Example:
DECLARE Status_Byte BYTE ;

CALL IIC_Read_Status (84h, .Status_Byte) ;

3.1.10. lIC_Read_Sub
Declaration:

IIC_Read_Sub:
PROCEDURE (Slave_Address, Count, Dest_Ptr, Sub_Address) [BIT | BYTE] EXTERNAL ;
DECLARE (Slave_Address, Count, Dest_Ptr, Sub_Address) BYTE ;
END ;

Desc['nrnn.

1IC_Read_Sub reads a message from a slave device preceded by a write of the subaddress. Between writing the subaddress and reading the
message, an |2C restart condition is generated without surrendering the bus. This prevents other masters from accessing the slave device in
between and overwriting the subaddress.

I2C Protocol:

M = Count

Sub = Sub_Address

D2([0..M-1] BASED by Dest_Ptr
1/

[5w [a] oo [a]s] s [a] 2w [a] sem [a] 00 DE=IEE
//

Example:

DECLARE Data_Buffer (5) BYTE ;

CALL IIC_Write_Sub (0A2h, LENGTH (Data_Buffer), .Data_Buffer, 2)

3.1.11. 1IC_Write_Sub_Read
Declaration:
IIC_Write_Sub_Read:

PROCEDURE (Slave_Address, Countl, Source_Ptrl, Sub_Address, Count2, Dest_Ptr2)

[BIT | BYTE] EXTERNAL ;
DECLARE (Slave_Address, Countl, Source_Ptrl, Sub_Address, Count2, Dest_Ptr2) BYTE ;
END ;

Description:

1IC_Write_Sub_Read writes a data block preceded by a subaddress, generates an I2C restart condition, and reads a data block. This procedure
can be used for devices that need an extended addressing method. Such a device is the ECCT (I2C controlled teletext device; see example).

May 1989 212

Philips Semiconductors Application note

PLM51 12C software interface 11C51 (version 0.5) ETV/AN89004

12 ocol:

L = Countl

M = Count2

Sub = Sub_Address

D1[0..L-1] BASED by Source_Ptrl
D2[0..M-1] BASED by Dest_Ptr2

/7
Isl S1vW IAI Sub |A| D1([0] lAI D1[1] |A‘ |A| D1[L-1] lAI
//
//
| é]i S1vR IA l D2([0] |A l D2([1] l Al IA | D2 [M-1] INI P]
/7
Example:

PROCEDURE Read_CCT_Memory (Chapter,Row, Column, Data_Buf, Data_Count);
DECLARE (Chapter, Row, Column, Data_Buf, Data_Count) BYTE ;

/*
The extended address (CCT-Cursor) is formed by Chapter, Row and Column. These
three bytes are written after the subaddress (8). After that the actual data will be
read relative to the extended address.

*/

CALL IIC_Write_Sub_Read (22h, 3, .Chapter, 8, Data_Buf, Data_Count) ;

END Read_CCT_Memory ;

3.2. Slave Mode Functions

12C slave mode is provided by IIC51M only. All slave mode actions (except initialisation) take place in the SIO1 interrupt procedure. Slave mode
12C protocol is very application dependent. If a specific slave mode is required, the user have to modify three procedures in 1IC51M at source
level. The following sections describe these procedures. The program examples of the procedures implement an I12C slave protocol to read and
write the microcontroller’s on chip RAM via I2C. This can be a useful feature during program development and debugging.

3.2.1. Init_Slave
This procedure is called from IIC_lInit. In this procedure the user can initialise all static data concerning slave mode functions (if any).

Example:
Slave_Sub_Address: db 1

Init_Slave: mov Slave_Sub_Address,#0 ; Initialise Sub Address
ret

3.2.2. Receive_Slave

Receive_Slave is a procedure called from the SIO1 interrupt procedure each time a byte is received from another I2C master. The procedure
can make use of the bit “lICntrl. BYTE1EXPECTED?", as defined in IC51M. This bit is set to logic 1, every time the first data byte of an 12C
message is about to be received. Receive_Slave can use this bit to detect the start of a new message.

Normally all bytes received from the other master will be acknowledged (i.e., SIO1 control bit Assert Acknowledge is set, AA = 1). If AAis
cleared by Receive_Slave subsequent bytes in the message will be ignored and a negative acknowledge will be transmitted after reception of
each byte. Note that the example does not make use of this feature.

Constraints:
— Receive_Slave must read the S1DAT register.
- Receive_Slave may clear the SIO1 control bit AA, to stop acknowledging data.
— Receive_Slave may not effect any other SIO1 hardware registers/bits.
— Receive_Slave is only allowed to use the accumulator and register R0 in the current registerbank.
Example:
Receive_Slave: mov a, S1DAT
mov r0, #Slave_Sub_Address
jbc IICCntrl.BYTE1EXPECTED, Save_Byte
mov r0,Slave_Sub_Address
inc Slave_Sub_Address
Save_Byte: mov @r0,a
ret

Pick up data

Prepare for 1lst byte
Jump if 1st byte
Else data byte

; Postincrement Sub.
Save Data

Exit

May 1989 213

Philips Semiconductors Application note

PLM51 I2C software interface IIC51 (version 0.5) ETV/AN89004

3.23. Send_Slave

Send_Slave is a procedure called during the SIO1 interrupt procedure each time a byte has to be transmitted to another 12C master. This occurs
after reception of I2C startcondition followed by the microcontroller’s own slaveaddress (as passed to Init_lIC) with read-bit. Send_Slave will be
called again after transmission of each subsequent byte, until a negative acknowledge is received from the readingFC master.

Constraints:

— Send_Slave must write to the S1DAT register.

— Send_Slave may not effect any other SIO1 hardware registers/bits.

— Send_Slave is only allowed to use the accumulator and register RO in the current registerbank.

Example:

Send_Slave: mov r0,Slave_Sub_Address ; Pick up Sub Address
mov S1DAT, @r0 ; Send Data
inc Slave_Sub_Address ; Postincrement Sub.
ret

May 1989 214

Philips Semiconductors Application note

L
I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

L
Author: J.C.P.M. Pijnenburg, Eindhoven

1. INTRODUCTION

This report describes the 12C drivers which are written for the 8xC751/2. The report describes not only how to use the routines, but also the
structure of the software. The software is written around a set of basic routines and a message handler. The message handler does not contain
any specific 8xC751 code, so the software can be easily rewritten for any other bit level 12C interface by rewriting the set of basic routines. In the
rest of this report, when 8xC751 is written, it means 8xC751/2.

The package supports also the multimaster features of the 12C bus.
The maximum bit rate possible when using those routines is approximately 70Kbit/sec.

References:

- The i2C-bus specification: 9398 358 10011

— 80C51-based 8-bit microcontrollers Data Handbook IC20
— PLM51 I2C Software interface 12C51: ETV/AN89004

2. GENERAL

2.1 Memory Usage & File Structure
The driver software consists of 3 main parts:
- 12C message handler

~ I2C basic routines
— 12C slave routines

During I2C usage it claims register bank 1, however, register bank 1 does not contain any static I2C data and can be used by the application
program outside the I2C routines (this data will be destroyed by 12C routines). The accumulator is also modified during I2C transfer.

The message handler uses a Message Control Block which consists of 8 bytes RAM. In those bytes, the following parameters are stored:
For block 1: 2C_ADDR_1, BUF_LEN and BUF_PTR_1
For block 2: I2C_ADDR_2, BUF_LEN and BUF_PTR_2

2 bytes of bit addressable RAM for STATUS and CONTROL information

The STATUS byte is returned into the accumulator. If you do not need a detailed status, you can test the carry bit, this is a copy of the
12C_ERROR bit of the status register (returned in the acc.). The status register contains the following information:

BIT NAME FUNCTION

0 RETRY_0O l

1 RETRY_1 |- Retry counter (0..7), as given during I12C_INIT
2 RETRY_2 l

3 12C_ERR 12C error if set (also available in carry)

4 TIME_ERR Bus timeout occurred if set

5 RECOVER - (no value for user) always 0

6 BUS_RECOVERED If set, bus K recovered after timeout

7 NO_ACK No acknowledge received

The slave function uses 2 bytes of RAM, those contain the own slave address (OWN_SLV_ADDR) and a pointer the slave transmit/receive
buffer of the 8xC751. This is the buffer from/in which the 8xC751 gets/stores the data bytes in slave mode.

The I2C module is built around a message handler which calls basic functions such as [2C_TRX_BYTE and I2C_START. Each function calls the
message handler after loading the correct mask into the 12C_CTRL byte.

July 1991 215

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007
FILENAME FUNCTION INCLUDE/LINK CODE SIZE (BYTE)
12C_DATA.GLO 12C global data definitions 1, each I12C function and assembler main 0
12C_DATA.LOC 12C local data definitions 1, each 12C function 0
12C_CODE.GLO 12C global function definitions |, assembler main 0
12C_INIT. ASM Init_I2C (does not use message handler) Link 22
12C_DEF.ASM Define MCB & _12C_xxx_BYTEs Link 0
12C_HAND.ASM 12C Message handler Link 144
12C_BASI.ASM 12C basic functions, and Tl interrupt handling Link 293
12C_TDEV.ASM 12C Test_Device Link, if used 5
12C_WRIT.ASM 12C Write Link, if used 5
12C_WSUB.ASM 12C Write_Sub Link, if used 5
12C_WSWIL.ASM 12C Write_Sub_SWinc & Write_Mem Link, if used 36
12C_WSUW.ASM 12C Write_Sub_Write Link, if used 5
12C_WSUR.ASM 12C Write_Sub_Read Link, if used 5
12C_WCOW.ASM 12C Write_Com_Write Link, if used 11
12C_WREW.ASM 12C Write_Rep_Write Link, if used 5
12C_WRER.ASM 12C Write_Rep_Read Link, if used 5
12C_READ.ASM 12C Read and Read_Status Link, if used 11
12C_RSUB.ASM 12C Read_Sub Link, if used 5
12C_RRER.ASM 12C Read_Rep_Read Link, if used 5
12C_RREW.ASM 12C Read_Rep_Write Link, if used 5
12C_SLAV.ASM 12C Slave Function Link 56

The total memory usage for the full package is
520 (single function) to 623 (all functions) bytes

ROM

RAM byte addressable : 8bytes
bit addressable : 2bytes
register bank 1 : -8 bytes

The message handler, causes the other functions to be very small, to further reduce the code, all functions are placed in separate modules,
which are put into a library 12C_751.LIB. If this library is linked to an application program, only the object modules which are used by the
application program are linked in the output file.

The I2C_CODE.H file contains the references to the separate functions (EXTRN CODE definitions). The use must not include this file into main,
but only copy the definitions which he needs into the source file. If this file is included, all functions will be linked, the library approach is of no

use in this case.

2.2 Retries

During initialization, the user defines whether he wants to use retries or not. If an 12C message fails, and retries >=0, the program restarts the
message. This is done for at most 7 times. If the message remains unsuccessful, the message handler returns to the main program, indicating
that the message has failed (carry set).

23 Error Handling
In case of an error while operating as master, the program returns to the message handler. The message handler decides whether to invoke a
retry or to return to the main program. '

The I2C interface of the 8xC751 generates a timeout interrupt if the bus hangs for more than 1022 cycles, in this cass, if the 8xC751 is master
(RECOVER = 1), a bus recover routine is started, if the 8xC751 is not master, the I2C bus is released. Retries are only invoked in the master

situation.

2.4 Development Tools
The following software tools from Tasking/BSO are used for program development:
— OM4142 Cross Assembler 8051 for DOS: V3.0b :

— OM4144 PL/M 8051 Compiler for DOS: V3.0a
— OM4136 C8051 Compiler for DOS: Vi.1a
— OM4129 XRAY51 debugger: V1.4c

July 1991

216

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

3. MASTER ROUTINES

3.1 Message Handler

To make the 12C protocols as described in paragraphs 3.2 to 3.15, and 12C message handler is written. The message control block (12C_| MCB)
together with the I12C control byte (I2C_CTRL) form the input for the message handler. The 12C_MCB includes 6 bytes of data, containing:

— |12C_ADDR1, first address in the protocol

- BUF_LEN_1, length of the first data buffer

- BUF_PTR_1, pointer to the first data buffer

- [2C_ADDR2, second address in the protocol
— BUF_LEN_2, iength of the second data buffer
- BUF_PTR_2, pointer to the second data buffer

The I2C_CTRL byte is bit addressable. It contains 8 bits that determine the flow through the message handler. This byte must be loaded with
the corresponding mask before starting the message handler.

The 12C_CTRL byte contains the following bits:
- REP_STRT_BLK1 must we send a repeated start before the first data block? (0=NO, 1=YES)

— RWN_BLK1 read (1) or write (0) the first block of data

- ADDR2 is there a second address in the protocol? (0=NO, 1=YES)

— ADDR2_SUB is the 2nd address a sub address, only relevant if ADDR2=1.

- BLOCK2 is there a second block of data in the protocol? (0=NO, 1=YES)
— RWN_BLK1 read (1) or write (0) the first block of data

- REP_STRT_BLK1 must we send a repeated start before the second data block?
— TEST_DEVICE is it the test device protocol

When an I2C protocol is handled successfully by the message handler, it retums control to the main program,; if not it can do a retry by
resending the message (maximum 5 retries are possible).

The message handler return value is stored in the I2C_STAT byte. The I2C_ERROR bit indicates whether the transfer has succeeded.

NOTE: It is better to copy this byte into Acc before returning the control to the main program, this way a byte can be saved (I2C_STAT can be
placed in register bank 1) and the main program can do a JZ/JNZ test (must be changed).

3.2 I2C_INIT

Description

Init_I2C must be called after RESET, before any procedure is called. The I2C interface and I2C interrupt will be enabled (STEB ETI,EI2 and EA).
Own_Slave_Address is passed to Init_I2C for use as slave. Slave_Sub_Address is the pointer to a DATA buffer that is used for data transfer in
slave mode. When used as master in a single master system, these parameters are not used. Retry‘is the number of retries on messages when
an error occurs. 0 means no retry (just 1 attempt to send a message), while the maximum amount of retries is 7. ‘

12C Protocol
none (no action at 12C bus)

Calling Sequence

C : 12C_INIT(Own_SIv_Addr,Siv_Buf_Addr,Retry);

PL/M51 : 12C_INIT(Own_SIv_Addr,Siv_Buf_Addr,Retry);

Assembler : %I2C_INIT(Own_Slv_Addr,Slv_Buf_Addr,Retry);
(macro call)

Parameters

Own_Slave_Adr :8xC751 own slave address
Slave_Buffer_Adr : Base address of buffer, to transmit data from, or receive data in, when 8xC751 is in slave mode.
Retry : Number of times to do a retry in case of an error. 0 = No Retry, maximum retries is 7.

NOTE:

The Init_I2C function enables the I2C watchdog timer interrupt (T1). This watchdog generates an interrupt when during and I2C transfer, SCL is
held longer than 1022 machine cycles (ca. 760ps @ 16MHz). If this time is too short for your application, you can disable the TI (CLR ETI). In
this case, the main program must check if a bus hangup occurs, and take proper action when the bus is hangup.

July 1991 217

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

3.3 [2C_TEST_DEVICE

Description
12C_Test_Device just sends the slave address to the I12C bus. It can be used to check the presence of a device on the I2C bus.

12C Protocol
Siv_W : Slave_Adr + Write bit

[STSWWA[P]

Device is present

[S[SWWN[P]

Device is not present

Calling Sequence
C . 12C_TEST_DEVICE(SIv_Addr);

PL/M51 : 12C_TEST_DEVICE(SIv_Addr);

Assembler : %I2C_TEST_DEVICE(SIv_Addr);
(macro call)

Parameters

Slave_Adr : Slave address of the device to be tested.

3.4 I12C_WRITE

Description
12C_Write is the most basic procedure to write a message to a slave device.

12C Protocol
Slv_wW : Slave_Adr + Write bit
DO..Dn : Data bytes

[STSVWIA[DO[A[DI [A[D2[A]...[A[Dn][A[P]

Calling Sequence

C : 12C_WRITE(SIv_Addr,Count,Source_Ptr);
PL/M51 : 12C_WRITE(SIv_Addr,Count,Source_Ptr);
Assembler : %I2C_WRITE(SIv_Addr,Count,Source_Ptr);
Parameters
Slave_Adr : Slave address of the device to write to.
Count : Number of bytes to transmit (DO .. Dn, n = count - 1)
Source_Ptr : Pointer to data buffer, to transmit bytes from.

(macro call)

July 1991 218

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

3.5 I12C_WRITE_SUB

Description
12C_Wirite_Sub writes a message preceded by a sub-address to a slave device.

12C Protocol

Siv_W : Slave_Adr + Write bit
Sub : Sub_Adr

DO0..Dn : Data bytes

[S]Sv.W [A[Sub]A[DO[A[DI[A]...[A[Dn [A[P]

Calling Sequence

(o} : 12C_WRITE_SUB(Slv_Addr,Count,Source_Ptr,Sub_Addr);

PL/M51 : 12C_WRITE_SUB(Slv_Addr,Count,Source_Ptr,Sub_Addr);

Assembler : %I2C_WRITE_SUB(SIv_Addr,Count,Source_Ptr,Sub_Addr);
(macro call)

Parameters

Slave_Adr : Slave address of the device to write to.

Count : Number of bytes to transmit (DO .. Dn, n = count - 1)

Source_Ptr : Pointer to data buffer, to transmit bytes from.

Sub_Adr : Sub address.

3.6 I12C_WRITE_SUB_SWINC

Description

Some I2C devices addressed with a sub-address do not automatically increment the sub-address after reception of each byte.
12C_Write_Sub_SWinc can be used for such devices the same way as 12C_Write_Sub is used. 12C_Write_Sub_SWiInc splits up the message in

smaller messages and increments the sub-address itself.

12C Protocol

Siv_W : Slave_Adr + Write bit
Sub+x : Sub_Adr+x
DO..Dn : Data bytes

[S[SV.W [A]Subs0 [A[DO P

[S]S.W [A[Subsi [A[DI P]

[S]SivW [A[Sub+n [A[Dn[P]

Calling Sequence
C : 12C_WRITE_SUB_SWINC(SIv_Addr,Count,Source_Ptr,Sub_Addr);

PL/M51 : 12C_WRITE_SUB_SWINC(SIv_Addr,Count,Source_Ptr,Sub_Addr);

Assembler : %I2C_WRITE_SUB_SWINC(SIv_Addr,Count,Source_Ptr,Sub_Addr);
(macro call)

Parameters

Slave_Adr : Slave address of the device to write to.

Count : Number of bytes to transmit (DO .. Dn, n = count — 1)

Source_Ptr : Pointer to data buffer, to transmit bytes from.

Sub_Adr : Sub address.

July 1991 219

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

3.7 12C_WRITE_MEMORY

Description

12C Non-Volatile Memory devices (such as PCF8582) need an additional delay after writing a byte to it. I2C_Write_Memory can be used to write
to such devices the same way 12C_Write_Sub is used. 12C_Write_Memory splits up the message in smaller messages and increments the
sub-address itself. After transmission of each message, a delay of 40 milliseconds (fxtaL = 16MHz) is inserted.

12C Protocol

Siv_W : Slave_Adr + Write bit
Sub+x : Sub_Adr+x

DO..Dn : Data bytes

[S]Siv.W [A]Sub+0 [A[DO[P]

40 mS

[S]SIv.W [A]Sub+i [A[D1]P]

40 mS

40 mS

[s]Slvw [A]Subtn [A[Dn][P]

40 mS

Calling Sequence
(3 : 12C_WRITE_MEMORY (SIv_Addr,Count,Source_Ptr,Sub_Addr);
PL/M51 : 12C_WRITE_MEMORY (SIv_Addr,Count,Source_Ptr,Sub_Addr);
Assembler : %I2C_WRITE_MEMORY (SIv_Addr,Count,Source_Ptr,Sub_Addr);

(macro call)
Parameters
Slave_Adr : Slave address of the device to write to.
Count : Number of bytes to transmit (DO .. Dn, n = count — 1)
Source_Ptr : Pointer to data buffer, to transmit bytes from.
Sub_Adr : Sub address.

July 1991 220

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

3.8 12C_WRITE_SUB_WRITE

Description

12C_Write_Sub_Write writes 2 data blocks preceded by a sub-address in one message to a slave device. This procedure can be used for
devices that need an extended addressing method, without the need to put all data into one large buffer. Such a device is the ECCT

(12C controlied teletext device; see example).

12C Protocol

Siv._.W : Slave_Adr + Write bit

Sub : Sub_Adr

D1.0..D1.n : Data bytes in first block
D2.0..D2.p : Data bytes in second block

[S]Sv.W [A[Sub[A[DI.O[A[DI1[A[...[A[DIn|[A[D20[A[...[A[D2p[A[P]

Calling Sequence
(o} 1 12C_WRITE_SUB_WRITE(SIv_Addr,Count_1,Source_Ptr_1,Sub_Addr,Count_2,Source_Ptr_2);

PL/M51 : 12C_WRITE_SUB_WRITE(SIv_Addr,Count_1,Source_Ptr_1,Sub_Addr,Count_2,Source_Ptr_2);

Assembler : %I2C_WRITE_SUB_WRITE(SIv_Addr,Count_1,Source_Ptr_1,Sub_Addr,Count_2,Source_Ptr_2);
(macro call))

Parameters

Slave_Adr_1 : Slave address of the device to write to.

Count_1 : Number of bytes to transmit in first block (D1.0 .. D1.n,n = count_1 - 1)

Source_Ptr_1 : Pointer to first block of data to transmit.

Sub_Adr : Sub address.

Count 2 : Number of bytes to transmit in second block (D2.0 .. D2.p, p = count_2 — 1)

Source_Ptr_2 : Pointer to second block of data to transmit.

3.9 I12C_WRITE_SUB_READ

Description
12C_Write_Sub_Read writes a data block preceded by a sub-address, generates an 12C restart condition, and reads a data block. This
procedure can be used for devices that need an extended addressing method. Such a device is the ECCT.

12C Protocol

Siv_W : Slave_Adr + Write bit

Siv_R : Slave_Adr + Read bit

Sub : Sub_Adr

D1.0..D1.n : Data bytes in first block (write)
D2.0..D2.p : Data bytes in second block (read)

|S| Siv_wW |A|Sub|A|D1.0|AlD1.‘I|Al...|A|D1.n‘A|S| Siv_R |A|D2.0[A|D2.1‘AI...IAIDZ.pIN|P|

Calling Sequence

C : 12C_WRITE_SUB_READ(SIv_Addr,Count_1,Source_Ptr,Sub_Addr,Count,Dest_Ptr);

PL/M51 : 12C_WRITE_SUB_READ(SIv_Addr,Count_1,Source_Ptr,Sub_Addr,Count,Dest_Ptr);

Assembler : %I2C_WRITE_SUB_READ(SIv_Addr,Count_1,Source_Ptr,Sub_Addr,Count,Dest_Ptr);
(macro call)

Parameters

Slave_Adr_1 : Slave address of the device to write and read to/from.

Count_1 : Number of bytes to transmit (D1.0 .. D1.n, n = count - 1)

Source_Ptr_1 : Pointer to first block of data to transmit.

Sub_Adr : Sub address.

Count_2 : Number of bytes to transmit in second block (D2.0 .. D2.p, p = count_2 — 1)

Dest_Ptr_2 : Pointer buffer to receive second block of data in.

July 1991 221

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

3.10 I12C_WRITE_COM_WRITE

Description

12C_Write_Com_Write writes two data blocks from different data buffers in one message to a slave receiver. This procedure can be used for
devices where the message consists of 2 different data blocks. Such devices are, for instance, LCD-drivers, where the first part of the message
consists of addressing and control information, and the second part is the data string to be displayed.

12C Protocol

Siv_W : Slave_Adr + Write bit

D1.0..D1.n : Data bytes in first block (write)
D2.0..D2.p : Data bytes in second block (write)

[S|Svw A[DIO[A[DI1[A[DI2[A]...[A[DI.n[A[D20[A[...[A[D2p|A P

Calling Sequence
C :12C_WRITE_COM_WRITE(SIv_Addr,Count_1,Source_Ptr_1,Count_2,Source_Ptr_2);

PL/M51 :12C_WRITE_COM_WRITE(SIv_Addr,Count_1,Source_Ptr_1,Count_2,Source_Ptr_2);

Assembler : %I12C_WRITE_COM_WRITE(SIv_Addr,Count_1,Source_Ptr_1 ,Count_2,Source_Ptr_2);
(macro call)

Parameters

Slave_Adr : Slave address of the device to write to.

Count_1 : Number of bytes to transmit in first block (D1.0 .. D1.n, n = count_1 - 1)

Source_Ptr_1 : Pointer to first block of data to transmit.

Count_2 : Number of bytes to transmit in second block (D2.0 .. D2.p, p = count_2 — 1)

Source_Ptr_2 : Pointer to second block of data to transmit.

3.11 12C_WRITE_REP_WRITE

Description
Two data strings are sent to separate slave devices, separated with a repeat START condition. This has the advantage that the bus does not
have to be released with a STOP condition before the transfer from the second slave.

12C Protocol

Siviw : Slave_Adr _1 + Write bit

Sivaw : Slave_Adr_2 + Write bit

D1.0..D1.n : Data bytes in first block (write to first slave)
D2.0..D2.p : Data bytes in second block (write to second slave)

[S]SViW [A[D1.0[A[DI.1[A[Di2[A]...[A[Din|A[P]

Calling Sequence
(o] : 12C_WRITE_REP_WRITE(SIv_Addr,Count_1,Source_Ptr_1 ,Sub_Addr,Count_2,Source_Ptr_2);

PL/M51 : 12C_WRITE_REP_WRITE(SIv_Addr,Count_1,Source_Ptr_1 ,Sub_Addr,Count_2,Source_Ptr_2);

Assembler : %I2C_WRITE_REP_WRITE(SIv_Addr,Count_1,Source_Ptr_1 ,Sub_Addr,Count_2,Source_Ptr_2);
(macro call)

Parameters

Slave_Adr_1 : Slave address of first device to write to.

Count_1 : Number of bytes to transmit in first block (D1.0 .. D1.n, n = count_1 — 1)

Source_Ptr_1 : Pointer to first block of data to transmit.

Slave_Adr_2 : Slave address of second device to write to.

Count_2 : Number of bytes to transmit in second block (D2.0 .. D2.p, p = count_2 — 1)

Source_Ptr_2 : Pointer to second block of data to transmit.

July 1991 222

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

3.12 12C_WRITE_REP_READ

Description
A data string is sent and received to/from two separate slave devices, separated with a repeat START condition. This has the advantage that
the bus does not have to be released with a STOP condition before the transfer from the second slave.

12C Protocol
Siviw : Slave_Adr _1 + Write bit
Siv2R : Slave_Adr_2 + Read bit
D1.0..D1.n : Data bytes in first block (write to first slave)
D2.0..D2.p : Data bytes in second block (write to second slave)
[S]SviW [ATD1.0[A]DI1[A]D1.2[A]...[A[DI.n[A]S] Slv2R [A[D2.0[A]D2.1 [A]...JA]D2p[NTP]

Calling Sequence
Cc 1 12C_WRITE_REP_READ(SIv_Addr,Count_1,Source_Ptr,Sub_Addr,Count_2,Dest_Ptr);

PL/M51 : 12C_WRITE_REP_READ(SIv_Addr,Count_1,Source_Ptr,Sub_Addr,Count_2,Dest_Ptr);

Assembler : %I2C_WRITE_REP_READ(SIv_Addr,Count_1,Source_Ptr,Sub_Addr,Count_2,Dest_Ptr);
(macro call)

Parameters

Slave_Adr_1 : Slave address of first device to write to.

Count_1 : Number of bytes to transmit in first block (D1.0 .. D1.n, n = count_1 — 1)

Source_Ptr_1 : Pointer to first block of data to transmit.

Slave_Adr_2 : Slave address of second device to read from.

Count_2 : Number of bytes to transmit in second block (D2.0 .. D2.p, p = count_2 — 1)

Dest_Ptr_2 : Pointer buffer to receive second block of data in.

3.13 [12C_READ

Description
12C_Read is the most basic procedure to read a message from a slave device.

12C Protocol
Siv_R : Slave_Adr + Read bit
DO ..Dn : Data bytes

[ST SR [A[DO[A[DI[A[D2[A[...[A[Dn[A[P]

Calling Sequence
: 12C_READ(SIv_Addr,Count,Dest_Ptr);

PL/M51 ‘1 12C_READ(SIv_Addr,Count,Dest_Ptr);
Assembler : %I2C_READ(SIv_Addr,Count,Dest_Ptr);
(macro call))
Parameters
Slave_Adr : Slave address of the device to be tested.
Count : Number of bytes to transmit (DO .. Dn, n = count - 1)
Dest_Ptr : Pointer to data buffer, to receive bytes in.

July 1991 223

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers , EIE/AN91007

3.14 12C_READ_STATUS

Description
Several I2C devices can send a one byte status-word via the bus. I2C_Read_Status can be used for this purpose. 12C_Read_Status works the
same way as 12C_Read, but the user does not have to pass a count parameter.

I12C Protocol
Siv_R : Slave_Adr + Read bit
Status : Status bytes

[S] Siv.R [A] Status[A[P|

Calling Sequence
C : 12C_READ_STATUS(SIv_Addr,Dest_Ptr);

PL/M51 : 12C_READ_STATUS(SIv_Addr,Dest_Ptr);
Assembler : %I2C_READ_STATUS(SIv_Addr,Dest_Ptr);

(macro call)
Parameters
Slave_Adr : Slave address of the device to be tested.
Count : Number of bytes to transmit (DO .. Dn, n = count = 1)
Dest_Ptr : Pointer to data buffer, to receive status byte in.

3.15 [2C_READ_SUB

Description

12C_Read_Sub reads a message from a slave device, preceded by a write of the sub-address. Between writing the sub-address and reading
the message, an I2C restart condition is generated without releasing the bus. This prevents other masters from accessing the slave device in
between and overwriting the sub-address.

I12C Protocol

Siv_W : Slave_Adr + Write bit
Siv_R : Slave_Adr + Read bit
Sub : Sub_Adr

[S[SvW A[Sub[A[S[SVR [A[DI[A]...[A[Dn [N]P]

Calling Sequence
(o} : 12C_READ_SUB(SIv_Addr,Count,Dest_Ptr,Sub_Addr);

PL/M51 : 12C_READ_SUB(SIv_Addr,Count,Dest_Ptr,Sub_Addr);

Assembler : %12C_READ_SUB(SIv_Addr,Count,Dest_Ptr,Sub_Addr);
(macro call)

Parameters

Slave_Adr : Slave address of the device to be tested.

Count : Number of bytes to transmit (DO .. Dn, n = count — 1)

Dest_Ptr : Pointer to data buffer, to receive bytes in.

Sub_Adr : Sub address.

July 1991 224

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

3.16 12C_READ_REP_READ

Description
Two data strings are read from separate slave devices, separated with a repeat START condition. This has the advantage that the bus does not
have to be released with a STOP condition before the transfer from the second slave.

12C Protocol

SiviR : Slave_Adr_1 + Read bit
SIv2R : Slave_Adr_2 + Read bit
D1.0..D1.n : Data bytes in first block (read from first slave)
D2.0..D2.p : Data bytes in second block (read from second slave) .
[S]SVIR JA[D1.0[A[D1.1[A]D12]A]...[A[D1.n[N|S| SIv2R [A[D2.0[A[D21[A[...[A[D2p[N]P]
Calling Sequence
(o} : 12C_READ_REP_READ(SIv_Addr,Count_1,Dest_Ptr_1,Sub_Addr,Count_2,Dest_Ptr_2);
PL/M51 : 12C_READ_REP_READ(SIv_Addr,Count_1,Dest_Ptr_1,Sub_Addr,Count_2,Dest_Ptr_2);
Assembler : %I2C_READ_REP_READ(SIv_Addr,Count_1,Dest_Ptr_1,Sub_Addr,Count_2,Dest_Ptr_2);
(macro call)
Parameters
Slave_Adr_1 : Slave address of first device to write to.
Count_1 : Number of bytes to transmit in first block (D1.0 .. D1.n, n = count_1 — 1)
Dest_Ptr_1 : Pointer buffer to receive first block of data in.
Sub_Adr_2 : Slave address of second device to read from.
Count_2 : Number of bytes to transmit in second block (D2.0 .. D2.p, p = count_2 — 1)
Dest_Ptr_2 : Pointer buffer to receive second block of data in.

3.17 12C_READ_REP_WRITE

Description
A data string is received and sent from/to two separate slave devices, separated with a repeat START condition. This has the advantage that
the bus does not have to be released with a STOP condition before the transfer from the second slave.

12C Protocol
SIviR : Slave_Adr_1 + Read bit
Sivaw : Slave_Adr_2 + Write bit
D1.0..D1.n : Data bytes in first block (read from first slave)
D2.0..D1.p : Data bytes in second block (read from second slave)
[s] sviR |A]D1.0|A|D1.1|A|D1.2|A|...|A[D1.n|N|s| Siv2W [A[D2.0[A[D21]A]J... |A|DZ.p|A[P—|

Calling Sequence
(o} : 12C_READ_REP_WRITE(SIv_Addr,Count_1,Dest_Ptr_1,Sub_Addr,Count_2,Source_Ptr);

PUM51 : 12C_READ_REP_WRITE(SIv_Addr,Count_1,Dest_Ptr_1,Sub_Addr,Count_2,Source_Ptr);

Assembler : %l12C_READ_REP_WRITE(SIv_Addr,Count_1,Dest_Ptr_1,Sub_Addr,Count_2,Source_Ptr);
(macro call)

Parameters

Slave_Adr_1 : Slave address of first device to write to.

Count_1 : Number of bytes to transmit in first block (D1.0 .. D1.n,n = count_1 - 1)

Dest_Ptr_1 : Pointer buffer to receive first block of data in.

Sub_Adr_2 : Slave address of second device to read from.

Count_2 : Number of bytes to transmit in second block (D2.0 .. D2.p, p = count_2 — 1)

Dest_Ptr_2 : Pointer buffer to transmit second block of data from.

July 1991 225

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

4. SLAVE ROUTINES

The slave-mode protocol is very application dependent. In this note the basic slave-receive and slave-transmit routines are given and should be
considered as examples. The user may, for instance, send NO_ACK after receiving a number of bytes to signal to the master-transmitter that a
data buffer is full. A listing of the slave routines is given in Appendix Iil.

The I2C slave function has two entries:
1. The I2c interrupt.
This can only occur at an idle slave, because when a transmission is in progress, the 12C interrupt is disabled.

2. Through the master routines.
During transmission of a slave-address in master-mode, arbitration is lost to another master. The interface must then switch to slave-receiver
mode to check if this other master wants to address the 8xC751 I2C interface. If the 8xC751 recognizes his own slave address, the slave
mode routines are entered at labels 12C_SLV_TRX or I2C_SLV_RCV.

Interfacing the master routines, if the user wants to adapt the slave routines to his own needs, he has to keep in mind that the master routines
use the I2C_SLV_TRX and I2C_SLV_RCV entries. The I2C slave routines are entered after the acknowledge has been sent, therefore the ATN
flag will be set when entering the slave routines at 12C_SLV_TRX or I2C_SLV_RVC.

The slave routines, as given, make use of a single data buffer. When addressed as slave transmitter, data bytes from the data buffer are
transmitted over the 12C bus until a not acknowledge or stop is received. When addressed as slave receiver, the data from the 12C bus is
received into the data buffer until a not acknowledge or a stop is received.

The data buffer is initialized during the Init_I2C function, one of the parameters of this function is the pointer to the data buffer
(SLV_BUF_PTR DS 1).

4.1 Slave Transmitter
The slave transmitter function transmits data bytes from the 8xC751 data buffer (ACALL I12C_TRX_BYTE) until a not acknowledge or a stop is
received. The function is also exit on an I2C error. The function is exit with the ATN bit set.

4.2 Slave Receiver
The slave receiver function receivers data bytes into the 8xC751 data buffer (ACALL 12C_RCV_BYTE) until a stop is received. The function is
also exit on an I2C error. The function is exit with the ATN bit set. If a byte has been received, an acknowledge is sent.

July 1991 ' 226

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

5. EXAMPLES

5.1 Introduction

Some examples are given on how to use the I12C routines in an application program. Examples are given for an assembly, PL/M and C
programs. The program displays time form the PCF8583P clock/calendar/RAM on an LCD display driven by the PCF8577. The example can be
executed on the OM4151 I2C evaluation board.

5.2 Using the Routines in Assembly Sources

Appendix VIl shows the listing of the example program. The most important aspect when using the 12C routines is preparing the input
parameters before the sub-routine call. The parameters must be transferred to the MCB (Message Control Block). Below are 2 examples of how
to transfer the necessary parameters to MCB (_I2C_Read and _I2C_Write_Sub_Read).

MOV _I2C_MCB, #Slave_Adr
MOV _I2C_MCB+1,#Count_1
MOV _I2C_MCB+2,#Dest_Ptr_1
ACALL _I2C_READ

MOV _I2C_MCB, #S1_Adr

MOV _I2C_MCB+1,#Cnt_1

MOV _I2C_MCB+2,#S_Ptr_1
MOV _I2C_MCB+3, #Sub_Adr
MOV _I2C_MCB+4,#Cnt_2

MOV _I2C_MCB+5, #S_Ptr_2
ACALL _I2C_WRITE_SUB_READ

Note that the order of defining the parameters is the same as in PL/M- and C-calls (Calling sequences in paragraphs 3.2 to 3.17). An easier
way to call the routines is to make a macro that includes the to transfer of the parameters.

The example program makes use of macros. 12C_Read is then called in the following way:
%I2C_READ(Slave_Adr,Count_1, Source_Ptr_1);

Note that in the listing the macro call is replaced by the contents of the macro.

The macro must be written as follows:

%$* DEFINE (I2C_READ(Slave_Adr,Count_1,Dest_Ptr_1))
(

MOV _I2C_MCB, #%Slave_Adr

MOV _I2C_MCB+1, #%Count_1

MOV _I2C_MCB+2, #%Dest_Ptr_1

ACALL _I2C_READ
)

File 12C_MAC.DEF contains the macro calls for the routines as described in paragraphs 3.2 to 3.17. This file should be included in all assembler
modules in which calls to the I2C routines are made.

The file I2C_CODE.GLO contains the global function definitions (EXTRN CODE) of the I2C functions, copy the ones you need into your
application. The file 12C_DATA.GLO contains the global data definitions of the I12C functions. Therefore, this file must also be included in all
assembler modules in which calls to the 12C routines are made.

All 12C routines return a status into the CY-bit. If the CY-bit is set, and error has occurred.

5.3 Using the Routines in PL/M-51 Sources

Appendix Vi shows the listing of the example program in PL/M-51. All procedures return a BIT value. The file 12C_PL/M.H contains the
procedure declarations, this file can be included in the modules which call I12C routines. The routines are used the same way as in the examples
of paragraph 5.2.

5.4 Using the Routines in C Sources

Appendix IX shows the listing of the example program in C. All functions are return a bit value. The file 1I2C_C.H contains the function

prototypes, this file can be included in the modules which call 12C routines. The routines are used the same way as in the examples of
paragraph 5.2.

July 1991 227

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

Read.Me

LN S N T N R I N T N SN N N R

If you include this file,

PACKAGE: I2C drivers for 8xC751/2 microcontroller

DESCRIPTION: To use the package just link the library: I2c_751.1lib
to your application program

NOTES: If you use the package with assembler sources, you must include
\USER\INCLUDE\I2C_DATA.GLO and \USER\INCLUDE\I2C_MAC.DEF into
your main application(s).

\USER\INCLUDE\I2C_CODE.GLO contains external code definitions,

select the ones you need and copy them into your main application*
the linker assumes that you use all I2C*
functions and therefore links the complete package to your
application (in this case the library approach is of no use!)

If you use the package with PLM sources, you must include
\USER\INCLUDE\I2C_PLM.H in each file which uses an I2C function

If you use the package with C sources, you must include
\USER\INCLUDE\I2C_PLM.C in each file which uses an I2C function

CONTENTS OF DISK

The disk contains 3 directories:

1:\USER :This directory contains 2 directories:

\ INCLUDE
I2C_PLM.H
I2C_C.H
I2C_MAC.DEF

I2C_DATA.GLO
I2C_DATA.LOC
I2C_CODE.GLO
REG751.H

\LIB
LIB.BAT
I2C_751.LIB

:PLM header file

:C header file

:ASM header file,

Macro definitions for ASM function calls

:I2C global data (assembler only)

:I2C local data (assembler only, not for user)
:I2C extern code definitions (assembler only)
:8xC751 register file

:example batch file to create library
:8xC751/2 I2C drive library

2:\EXAMPLE :This directory contains 3 directories

\DEMO_ASM
\DEMO_PLM
\DEMO_C

3:\SOURCE :This directory contains the source files of the modules that are

:Assembly example
:PL/M example
:C example

put in library with I2C_751.LIB

July 1991

228

* ok ok ok ok o b % o x ¥

ok ok ok ok Ok kX *

‘Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

I12C Master routines

$ TITLE(I2C_DEF.ASM)

i *
i *
v INCLUDE FILE: I2C_DEF.ASM *
i PACKAGE : I2C *
i *
i* *
i* *
i* This file must be LINKED to each I2C sub function *
i* *

USING(1)
i* *
i* GLOBAL DATA DECLARATIONS * '
ox *
i

PUBLIC I2C_MCB

PUBLIC . I2C_CTRL

PUBLIC I2C_STAT

PUBLIC OWN_SLV_ADDR

PUBLIC SLV_BUF_PTR

PUBLIC I2C_ADDR_1

PUBLIC BUF_LEN_1

PUBLIC BUF_PTR_1

PUBLIC I2C_ADDR_2

PUBLIC BUF_LEN_2

PUBLIC BUF_PTR_2
; *
P GLOBAL FUNCTION DECLARATION *
S
;

PUBLIC _I2C_INIT_BYTE

PUBLIC _I2C_TEST_DEVICE_BYTE

PUBLIC _I2C_WRITE_BYTE

PUBLIC _I2C_WRITE_SUB_BYTE

PUBLIC _I2C_WRITE_SUB_SWINC_BYTE

PUBLIC _I2C_WRITE_MEMORY_BYTE

PUBLIC _I2C_WRITE_SUB_WRITE_BYTE

PUBLIC _I2C_WRITE_SUB_READ_BYTE

PUBLIC _I2C_WRITE_COM_WRITE_BYTE

PUBLIC _I2C_WRITE_REP_WRITE_BYTE

PUBLIC _I2C_WRITE_REP_READ_BYTE

PUBLIC _I2C_READ_BYTE

PUBLIC _I2C_READ_STATUS_BYTE

PUBLIC _I2C_READ_SUB_BYTE

PUBLIC _I2C_READ_REP_READ_BYTE

PUBLIC _I2C_READ_REP_WRITE_BYTE
i* *
i GLOBAL FUNCTION DEFINITIONS *
o*
;

*

I2C_MCB_DATA SEGMENT DATA

RSEG I2C_MCB_DATA
_I2C_INIT_ BYTE:
OWN_SLV_ADDR : DS 1
SLV_BUF_PTR: DS 1

_I2C_TEST_DEVICE_BYTE:
_I2C_WRITE_BYTE:
_I2C_WRITE_SUB_BYTE:
_I2C_WRITE_SUB_SWINC_BYTE:
_I2C_WRITE_MEMORY_BYTE:
_I2C_WRITE_SUB_WRITE_BYTE:
_I2C_WRITE_SUB_READ_BYTE:
_I2C_WRITE_COM_WRITE_BYTE:
_I2C_WRITE_REP_WRITE_BYTE:
_I2C_WRITE_REP_READ_BYTE:
_I2C_READ_BYTE:
_I2C_READ_STATUS_BYTE:
_I2C_READ_SUB_BYTE:
_I2C_READ_REP_READ_BYTE:
_I2C_READ_REP_WRITE_BYTE:

July 1991

229

Philips Semiconductors

Application note

I12C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

I2C_MCB:

Ds

I2C_ADDR_1
BUF_LEN_1
BUF_PTR_1
I2C_ADDR_2
BUF_LEN_2
BUF_PTR_2

DATA
DATA
DATA
DATA
DATA
DATA

I2C_MCB+0
I2C_MCB+1
I2C_MCB+2
I2C_MCB+3
I2C_MCB+4
I2C_MCB+5

I2C_STAT_DATA SEGMENT DATA BITADDRESSABLE
I2C_STAT_DATA

RSEG

I2C_CTRL:
I2C_STAT:

July 1991

Ds
DS

1
1

230

Philips Semiconductors

Application note

12C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$ TITLE(I2CDATAG.H)

i*
L x *
i
i* INCLUDE FILE: I2CDATA.GLO *
i* PACKAGE 12C *
s *
i
v
i* *
i* This file must be included into each I2C function, *
i* and into the MAIN ASSEMBLER program (if exists) *
i* It contains the I2C Global data definitions *
S *
i* *
Hd I2¢ FREQUENCY SETTINGS *
i* *
I - *
i* This part contains frequency dependent settings *
[of the 8xC751/8xC752 IYC interface *
s *
¥ The user can adapt this part to his own wishes. *
* If this part has been changed, the whole IyC package *
i* must be assembled, linked and put into a library *
i* again. *
i* *
i* The default setting are made for a 16MHz clock *
i* frequency, and a 40 mS delay for programming EEPROM *
s *
;
CT1_CTO EQU 002H ;Frequency <= 16.8 MHz
; 001H Frequency <= 14.25 MHz
; 000H Frequency <= 11.7 MHz
; 003H Frequency <= 9.14 MHz
EEPROM_PROG_DELAY EQU 103 ;40 Msec at 16MHz
1 DELAY = 514 * EEPROM_PROG_DELAY * 12/fosc
S *
;
i* END I2¢C FREQUENCY SETTINGS *
i* *
d *
* GLOBAL DATA DEFINITIONS *

EXTRN DATA (_I2C_INIT_BYTE)
EXTRN DATA (OWN_SLV_ADDR)
EXTRN DATA (SLV_BUF_PTR)

EXTRN DATA (I2C_MCB)
(I2C_ADDR_1)
(BUF_LEN_1)
(BUF_PTR_1)
(I2C_ADDR_2)
(BUF_LEN_2)
(BUF_PTR_2)

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

DATA

EXTRN DATA (I2C_CTRL)
REP_STRT_BLK1 BIT
REP_BLK1

ADDR2

ADDR2_SUB

BLOCK2

RWN_BLK2
REP_STRT_BLK2 BIT

TEST_DEVICE

BIT
BIT
BIT
BIT
BIT

BIT

EXTRN DATA (I2C_STAT)

July 1991

RETRY_0O BIT
RETRY_1 BIT
RETRY_2 BIT
I2C_ERR BIT
TIME_ERR BIT
RECOVER BIT
BUS_RECOVERED BIT
NO_ACK BIT

I2C_CTRL.
I2C_CTRL.
I2C_CTRL.
I2C_CTRL.
I2C_CTRL.
I2C_CTRL.
I2C_CTRL.
I2C_CTRL.

I2C_STAT.
I2C_STAT.
I2C_STAT.
I2C_STAT.
I2C_STAT.
I2C_STAT.
I2C_STAT.
I2C_STAT.

0
1
2
3
4

o w

SousWwWNRO

231

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

i* GLOBAL SYMBOL DECLARATIONS *
*

I2C_START_CTRL EQU ODOH+CT1_CTO
I2C_ENABLE EQU 080H+CT1_CTO
I2C_RELEASE EQU OF4H
C_XMTA EQU 080H
C_IDLE EQU 040H
C_DRDY EQU 020H
C_ARL EQU 010H
C_STRT EQU 008H
C_STP EQU 004H
S_RSTR EQU 022H
S_STP EQU 021H

July 1991 232

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$ TITLE(I2C_DATA.LOC)

i*
i*

i* INCLUDE FILE: I2C_DATA.LOC

P* PACKAGE : I2C

Sx

i*

'.*

P* This file must be included into each I2C function,
i* It contains the I2C Local symbol definitions

*

* % ok ok

*

*

i* LOCAL SYMBOL DEFINITIONS

L
Spa BIT 81H
scL BIT 80H
BUF_PTR SET RO
BUF_LEN SET R1
BIT_CNT SET R2
MESS_RETRY_CNT SET R3
BUS_ERR_CLKS SET R4
MEM_MESS_LEN SET RS
MEM_DELAY_H SET R6
MEM_DELAY_L SET R7

$ TITLE(I2C_CODE.H)

i

INCLUDE FILE: I2C_CODE.H

*
o
i
i* PACKAGE
i*

*

I2C

*
* This file must be included into the ASSEMBLER MAIN
i* It contains the EXTERNAL CODE references (Global
*
*

function definitions) of the I2C functions

; GLOBAL

FUNCTION

DEFINITIONS

EXTRN CODE(_I2C_INIT)

EXTRN CODE(_I2C_TEST_DEVICE)

EXTRN CODE(_I2C_WRITE)

EXTRN CODE(_I2C_WRITE_SUB)

EXTRN CODE (_I2C_WRITE_SUB_SWINC)
EXTRN CODE (_I2C_WRITE_MEMORY)
EXTRN CODE(_I2C_WRITE_SUB_WRITE)
EXTRN CODE(_I2C_WRITE_SUB_READ)
EXTRN CODE (_I2C_WRITE_COM_WRITE)
EXTRN CODE (_I2C_WRITE_REP_WRITE)
EXTRN CODE(_I2C_WRITE_REP_READ)

EXTRN CODE (_I2C_READ)

EXTRN CODE (_I2C_READ_STATUS)
EXTRN CODE (_I2C_READ_SUB)

EXTRN CODE(_I2C_READ_REP_READ)
EXTRN CODE(_I2C_READ_REP_WRITE)

July 1991

233

P T S

P

*

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$ TITLE(I2C_Init command)
L*

PACKAGE : I2C

SOURCE FILE : I2C_INIT.ASM

ok k% %

$DEBUG

s
Had INCLUDES
*

*

i* LOCAL SYMBOL DECLARATIONS
x

RETRIES SET R3
$NOLIST

$INCLUDE (REG751.H)
$INCLUDE (I2C_DATA.GLO)
$INCLUDE (I2C_DATA.LOC)
$LIST

* 4 %

GLOBAL FUNCTI

ON DEFINITIONS *

PUBLIC _I2C_INIT

i* CODE SEGMENT

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

i *MPF:::I2C: :I2C_INIT.ASM:I2C_INIT
*

i

;* FUNCTION NAME: I2C_INIT
; *PACKAGE : I12C

;* DESCRIPTION:

;* Initialize I2C interface: set SDA & SCL, enable time out

i* timer, allow 16 MHz (CT1,CTO

;* retries (max 7) into the I2C_STAT. Bit 7,6 and 5 of the
;* TI2C_STAT contain the number

;* not be changed during the IYC routines.

s

;* INPUT:

i * Before calling I2C_INIT the main program must take care
I that the correct parameters are available in

i* OWN_SLV_ADDR, SLV_BUF_PTR and _I2C_INIT_BYTE+2, this
P* is done automatically when

P* defined assembler macro (available in I2C_MAC.DEF)

o

;* OUTPUT:

*

; initialized IYC and retry number in I2C_STAT 7..5

.k
i

= 0). Set the number of

of retries. Those bits may

using C, PL/M or the pre-

Bk ok Rk kR ok % ok b F % R K b % & o % ¥ %

; *EMP
_I2C_INIT:
MoV I2CFG, #I2C_ENABLE ;CLR TIRUN, CLR MASTRQ
SETB ETI
SETB EI2
SETB EA ;jenable interrupts
ANL OWN_SLV_ADDR, #0FEH ;save slv addr bit 0=0
MOV I2C_STAT, _I2C_INIT_BYTE+2
ANL I2C_STAT, #07H ;I2C_STAT = retries
MoV I2CON, #I2C_RELEASE
RET
i* *
P x HISTORY *
i* *
i* *
;* 03-07-91 J.C. Pijnenburg original version *
i* *
*

July 1991

234

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$TITLE(I2C age Handler)
S*

; *
i* *
A SOURCE FILE : I2C_HAND.ASM *
P PACKAGE : I2C *
L *
i
i *
$DEBUG
i* *
i* INCLUDES *
i* *
$NOLIST
$INCLUDE (REG751.H)
$INCLUDE (I2C_DATA.GLO)
$INCLUDE (I2C_DATA.LOC)
SLIST
i* *
A GLOBAL REFERENCES *
w *
i

EXTRN CODE(I2C_STOP)

EXTRN CODE (I2C_TRX_BYTE)

EXTRN CODE (I2C_TRX_ADDR)

EXTRN CODE (I2C_RCV_BYTE)

EXTRN CODE (I2C_TRX_BLOCK)

EXTRN CODE (I2C_RCV_BLOCK)

EXTRN CODE (I2C_STRT_SLVAD)

EXTRN CODE(I2C_RSTRT_SLVAD)
i* *
i* GLOBAL FUNCTION DEFINITIONS *
L *
i

PUBLIC I2C_MESS_HAND
i* *
i* LOCAL SYMBOL DECLARATIONS *
s *

RWN BIT OEOH ;bit ACC.0

I2C_PSW EQU 8
i* *
Had CODE SEGMENT *
i* «

I2C_DRIVER SEGMENT CODE

RSEG I2C_DRIVER
j*MPF:::I2C::I2C_HAND.ASM:I2C_MESS_HAND:
L *
;* FUNCTION NAME: I2C_HAND *
;* PACKAGE: 12C *
;* DESCRIPTION: *
;* Transmit an I2C age, includes error handling *
i* *
;* INPUT: age control byte I2C_CTRL (bit addressable) *
i* age control block I2C_MCB, containing: *
H 12C_ADDR1 (i.e. slave address *
i* BUF_LEN1 (i.e. number of bytes to trx.) *
i* BUF_PTR1 (i.e. transmit buffer) *
i* I2C_ADDR2 (i.e. sub address) *
i* BUF_LEN2 (i.e. length of second data blk) *
i* BUF_PTR2 (i.e. second transmit buffer) *
x *
;* OUTPUT: I2C_ERROR byte (bit addressable) *
S *
H
; *EMP *

I2C_MESS_HAND:
PUSH PSW

MoV PSW, #I2C_PSW ;sel RB1

ANL I2C_STAT, #07H ;clr all but retry bits
MOV MESS_RETRY_CNT, I2C_STAT

INC MESS_RETRY_CNT ;load retry counter

July 1991

235

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

RETRY:
ANL I2C_STAT, #07H ;jclr all but retry bits
MOV A,I2C_ADDR_1 ;load SLV_ADDR
CLR RWN ;if (subaddress)
JB ADDR2_SUB, STRT ; RWN = 0
MoV C,RWN_BLK1 ielse
MOV RWN, C ; RWN = RWN_BLK1
STRT:
ACALL I2C_STRT_SLVAD ;jsend START+SLV_ADDR+RWN
JNB I2C_ERR, CONTINUE ;branch offset to large
AJMP EXIT
CONTINUE:
JB TEST_DEVICE,M_STOP
MOV BUF_PTR, BUF_PTR_1 ;load pointer blockl
MoV BUF_LEN, BUF_LEN_1 ;load length blodkl
JNB ADDR2_SUB, BLOCK ;if (addr2_sub)
MOV A,I2C_ADDR_2 ; load sub address
ACALL I2C_TRX_BYTE i trx_byte(sub addressO
JB I2C_ERR,EXIT ; if (error) exit ();
JNB REP_STRT_BLK1,BLOCK ; if (rep. start blkl)
MOV A,I2C_ADDR_1 H load slave address
SETB RWN ; read
ACALL I2C_RSTRT_SLVAD H send RSTART+SLV_ADDR
JB I2C_ERR, EXIT : if (error) exit();
BLOCK:
JNB RWN_BLK1, TRX_1 ;if ((rwn_blkl) == read))
ACALL I2C_RCV_BLOCK ;i rcv_block(&datal,cntl)
SIMP END_BLOCK1
TRX_1:
ACALL I2C_TRX_BLOCK ; trx_block(&dtatl,cntl)
ENC_BLOCK1:
JB I2C_ERR, EXIT ;if (error) exit();
JNB BLOCK2,M_STOP ;if (2nd block of data)
MoV BUF_PTR, BUF_PTR_2 i{
MoV BUF_LEN, BUF_LEN_2 H
JNB ADDR2, DATA2 ;i if (addr2)
JNB REP_STRT_BLK2,DATA2 ; if (rep. start blk2)
MOV A,I2C_ADDR_2 H { set address2
JNB ADDR2_SUB, SET_RWN H if (addr2_sub)
Mov A,I2C_ADDR_1 H set addressl
SET_RWN: H /* same slave */
MOV C,RWN_BLK2
MOV RWN, C H modify RWN BLK1
ACALL I2C_RSTRT_SLVAD i snd RSTART+SLV_ADDR
JB I2C_ERR,EXIT ; if (error) exit();
DATA2: ; }
JNB RWN_BLK2, TRX_2 ; if ((rwn_blk2)==read)
ACALL I2C_RCV_BLOCK H rcv_block(&_datl,cl)
SJIMP BLOCK_ERR
TRX_2: ;i else
ACALL I2C_TRX_BLOCK ; trx_block(&datal,cl)
BLOCK_ERR:
JB I2C_ERR, EXIT i if (error exit();
M_STOP:
ACALL I2C_STOP i}
JB I2C_ERR, EXIT ; if (error exit();

AJMP RESTORE_CONTEXT

;*MPF:::I2C::I2C_HAND.ASM:EXIT *
% *
;* FUNCTION NAME: EXIT *
;* PACKAGE: I2C *

*

;* DESCRIPTION:

o x
H

. x

* ok E *

Exit an I2C message. This routine is only entered if an*

IyC error has occured. If more retries must be made, *
the message is started again. If no retry must be made, *
the message handler is left after setting the carry. *

Carry is 1 indicates that an error has occurred (return*
value for C and PL/M calls). If the routine is entered *

; at the RESTORE_CONTEXT label, no error has occurred *
; *
;* OUTPUT: I2C_ERROR byte (bit addressable *
S *
; *EMP: *
EXIT:

JNB TIME_ERR, TO_RETRY

JNB BUS_RECOVERED, RESTORE_CONTEXT

July 1991 236

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

TO_RETRY:
MOov I2CON, #I2C_RELEASE
DJINZ MESS_RETRY_CNT,RETRY ; if (no more retries)

RESTORE_CONTEXT :

MoV I2CFG, #I2C_ENABLE ; SLVEN=1,MSTRQ=0, TIRN=0

MoV A, I2C_STAT

POP PSW 7 restore PSW

MoV C,I2C_ERR
END_MESSAGE : ;label for debugging

SETB EI2 ; enable I2C interrupt

RET ; with XRAY
;*===========-=s=================== *
i* HISTORY *
A *
i* *
i* 12-06-91 J.C. Pijnenburg original version *
o *
i .

END

July 1991 237

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$TITLE(I2C_Basic Functions)
Lx

i

. *
; .
i * SOURCE FILE : I2C_BASI.ASM *
i * PACKAGE : I2C *
i* *
i* *
$DEBUG
i* *
i* INCLUDES *
P* *
$NOLIST
$INCLUDE (REG751.H)
$INCLUDE (I2C_DATA.GLO)
$INCLUDE (I2C_DATA.LOC)
$LIST
- *
i* GLOBAL REFERENCES *
ox
i

EXTRN CODE (I2C_SLV_TRX)

EXTRN CODE (I2C_SLV_RCV)

EXTRN CODE (ADDR_RECOG)
i* *
;% GLOBAL FUNCTION DEFINITIONS*
ox *
i

PUBLIC I2C_STRT_SLVAD

PUBLIC I2C_RSTRT_SLVAD

PUBLIC I2C_STOP

PUBLIC I2C_TRX_BYTE

PUBLIC I2C_TRX_ADDR

PUBLIC I2C_RCV_BYTE

PUBLIC I2C_RCV_ADDR

PUBLIC I2C_TRX_BLOCK

PUBLIC I2C_RCV_BLOCK

PUBLIC ADDR_COMPARE
i* *
i* INTERRUPT CODE SEGM: TIMERI*
o* *

CSEG AT O01BH
§*MPF:::I2C: : I2C_INIT.ASM:I2C_TIME_OUT *
L x *
;
;* FUNCTION NAME: I2C_TIME_OUT *
;* PACKAGE: 12¢C *
;* DESCRIPTION: *

*

i* I2C time out routine, clear timer interrupt, set the

TIME_ERR bit. If the 8xC751 was IYC bus master while the*
1), and attempt to recover*
*

if SCL remains low, the*

s
i

;* interrupt occurred (RECOVER

;* the bus is made.

;* To recover, SDA and SCL are set,

;* IYC bus cannot be recovered and the routine is left.

;* If SCL is HIGH but SDA is low, 9 additional clocks are
;* genrated. If SDA becomes HIGH, a STOP is made

;* If the 8xC751 was not IYC bus master (RECOVER = 0), the
;* bus is released.

i*

; *EMP

SETB CLRTI
SETB TIME_ERR
CLR TIRUN
AJMP TI_INT

s x
i* CODE SEGMENT

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

July 1991

238

* Ok %k Kk F

Philips Semiconductors Appiication note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

;*MPP:::I2C::I2C_BASI *
i* . *
;i* SOURCE FILE: I2C_BASI.ASM *
i* PACKAGE: I2C *
;* DESCRIPTION: *
;* Generate a start condition on the IyC bus, Set the *
;* MASTRQ bit. If 8xC751 has not become master on ATN, *
;* switch to receive mode and check if the own slave *
;* address is received. *
S *
;* INPUT: none *
;* OUTPUT: I2C_ERROR (0, no error; 1, error) *
;* OUTPUT CONDITION: SCL is stretched *
.k *
- .
I2C_STRT_SLVAD;

SETB TIRUN

JB STR, IS_MASTER ;already started

CLR EI2 ;disable I2C interrupt

MoV I2CFG, #I2C_START_CTRL

ACALL WAIT_ATN
IS_MASTER:

JB MASTER, I2C_TRX_ADDR

MOV I2CCON, #C_STRT

ACALL I2C_RCV_ADDR

JB I2C_ERR, END_I2C_START

ACALL ADDR_COMPARE
START_ERR:

SETB I2C_ERR
END_I2C_START:

RET
;*MPF:::I2C::I2C_BASI.ASM:I2C_REP_STRT *
s *
;* FUNCTION NAME: I2C_REP_START *
i* PACKAGE: 12C *
;* DESCRIPTION: *
i* Generate a repeated start condition on the I¥C bus *
i* The repeated start is generated by setting the XSTR *
;* bit. If STR is not set (by hardware), the IYC bus is *
;* released, no check for own slave address is done after a*
;* repeated start. *
i* *
;* INPUT: none *
;* OUTPUT: I2C_ERROR (0, no error; 1, error) *
;* OUTPUT CONDITION: SCL is stretched *
Sx *
i
; *EMP *
I2C_RSTRT_SLVAD:

MOV I2CON, #S_RSTR

ACALL WAIT_ATN ;wait for rising SCL

JNB DRDY, I2C_BASIC_ERR

MoV I2CON, #C_DRDY

ACALL WAIT_ATN ;wait for rep start

JNB STR, I2C_BASIC_ERR

SIMP I2C_TRX_ADDR
i *MPF:::I2C::I2C_BASI.ASM:I2C_STOP *
i* *
;* FUNCTION NAME: I2C_STOP *
i * PACKAGE I12¢C *
;* DESCRIPTION: *
;* Generate a stop condition on the I2C bus *
;* The STOP condition is generated by setting the XSTP bit.*
i* If no error occurs, this function is left with Iy bus *
;* released and TI stopped. In case of an error the bus is *
;* released in the message handler. *
S *
;* INPUT: none *
;* OUTPUT: I2C_ERROR (0, no error; 1, error) *
s *
i
; *EMP *
I2C_STOP:

CLR MASTRQ

MOV I2CCON, #S_STP

ACALL WAIT_ATN ;wait for rising ScL

JNB DRDY, I2C_BASIC_ERR

MOV I2CON, #C_DRDY

ACALL WAIT_ATN ;wait for stop

July 1991 239

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

MOV I2CON, #I2C_RELEASE
CLR TIRUN
RET

MPF:::I2C::I2C_BASI.ASM:I2C_TRX_ADD

*
S

;* FUNCTION NAME: I2C_TRX_ADDR

* PACKAGE: I2C

* DESCRIPTION:

* This function calls I2C_TRX_BYTE to transmit the

i* slave address, if an arbitration is lost before the last*
S

S

s

o

o

S

S

EEE R

HH me e me e me e me e me v me me me me e e

bit is transmitted, the function receives the remaining *
bits (receive mode), and checks whether the own slave *
address has been received (call ADDR_CMP). *
*
INPUT byte to transmit in ACC *
OUTPUT: I2C_ERROR (0, no error; 1, error) *
OUTPUT CONDITION: SCL is stretched *
* *
; *EMP *
2C_TRX_ADDR:
ACALL I2C_TRX_BYTE
JNB I2C_ERR, END_TRX_ADDR
DJINZ BIT_CNT, CONTINUE
AJMP END_TRX_ADDR
CONTINUE:
JNB ARL, END_TRX_ADDR
JB STR, END_TRX_ADDR ;parasitaire START
JB STR, END_TRX_ADDR ;parasitaire STOP
CLR I2C_ERR ;clr err for slv func
INC BIT_CNT jcorrect BIT_CNT
CLR OEOH JRDAT = 0 to ACC.0
RCV_NEXT_BIT:
MOV I2CON, #C_XMTA+C_DRDY+C_ARL ;rcv mode
ACALL WAIT_ATN
JNB DRDY, RESTORE_ERR
Mov C,RDAT
RLC A
DJNZ BIT_CNT,RCV_NEXT_BIT
ACALL ADDR_COMPARE
RESTORE_ERR:
SETB I2C_ERR ;set err for ret main
END_TRX_ADDR:
RET

MPF:::I2C::I2C_BASI.ASM:I2C_ADDR_COMPARE=

*
*

;* FUNCTION NAME: I2C_ADDR_COMPARE

;* PACKAGE: 12¢C

i* DESCRIPTION:

i* Compares the contents of the accumulator (received

;* address) with the OWN_SLV_ADDR. If equal and the RWN

;* bit is 0 (master transmit, slave receive) I2C_CLV_RCV is*
i *

i *

i *

i *

s *

i *

s *

* ok ok ok

called. If equal and the RWN bit is 1 (master receive, *
slave transmit) I2C_SLV_TRX is called. If not euqal exlt*
I2C_ADDR_COMPARE

i
i
i
i
H
H
i
i
H
H
H
H
H
H
;

*
INPUT: received address in ACC *
OUTPUT: I2C_ERROR (0, no error; 1, error) *
OUTPUT CONDITION: SCL is stretched *

*

; *EMP *

ADDR_COMPARE :

XRL A, OWN_SLV_ADDR

Jz SEND_ACK

CJINE A, #1, END_ADDR_COMPARE
SEND_ACK :

MOV I2DAT, #0

ACALL WAIT_ATN

JNB DRDY, END_ADDR_COMPARE

Jz SLAVE_RCV

AJMP I2C_SLV_TRX
SLAVE_RCV:

AJMP I2C_SLV_RCV
END_ADDR_COMPARE :
RET

July 1991 240

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

;*MPF:::I2C::I2C_BASI.ASM:I2C_BASIC_ERR

s *

i

;* FUNCTION NAME: I2C_BASIC_ERR
;* PACKAGE: I2C

;* DESCRIPTION:

;* Set the I2C_ERR bit. The message handler tests this bit
*

i

;* INPUT: none

;* OUTPUT: I2C_ERROR = 1
i*

i

F Ok Rk K A % R %

; *EMP
2C_BASIC_ERR:
SETB I2C_ERR

RET
;*MPF: : :12C: : I2C_BASI.ASM:I2C_TRX_BYTE *
- *
;
i* FUNCTION NAME: I2C_TRX_BYTE *
i* PACKAGE: I2C *
i* DESCRIPTION: *
;* Transmit a byte over the I2C bus. *
i* NOTE: The STR bit is cleared here instead of in the *
i* I2C_START routine, because there must be valid *
i* data in I2DAT before STR may be cleared (also *
i* releases the SCL line). *
s *
i
i* The I2C_TRX_BYTE function transmits a byte over the IyC *
i* bus, after the last bit has been transmitted, *
;* the function switches to receive mode to receive the *
;* acknowledge bit. If NACK is received, the NO_ACK bit is *
;* set. If arbitration is lost or an error occurs during *
i* I2C_TRX_BYTE the function is exit with the I2C_ERR bit *
i* set. *
i* INPUT: byte to transmit in ACC *
;* OUTPUT: I2C ERROR (0, no error; 1, error) *
;* OUTPUT CONDITION: SCL is stretched *
o *
- !
I2C_TRX_BYTE:

MoV BIT_CNT, #8
TRX_BIT:

MOV I2DAT,A irelease SCL

MOV I2CON, #C_STRT ;jif STR clear STR

;jelse dummy MOV
ACALL WAIT_ATN

JNB DRDY, I2C_BASIC_ERR

RL A

DJINZ BIT_CNT, TRX_BIT

MoV I2CON, #C_XMTA+C_DRDY ;receive mode
ACALL WAIT_ATN

JNB DRDY, I2C_BASIC_ERR

JNB RDAT, TRX_BYTE_RDY istretch SCL

SETB NO_ACK
TRX_BYTE_RDY:
RET

i *MPF:::I2C::I2C_BASI.ASM:I2C_RCV_BYT
*

* FUNCTION NAME: I2C_RCV_BYTE

* PACKAGE: I2C

* DESCRIPTION:

* Receive a byte from te I2C bus

* This is one function which receives a byte into acc. *
* RCV_BYTE first releases the SCL and then receives the 8 *
* bits. If RCV_ADDR is called, the first bit is already in*
* the RDAT register, this must first be saved before the
*

*

*

*

*

*

* ok ok * * ¥

*
; SCL is released. *
. *
;* INPUT: none *
;* OUTPUT: I2C_ERROR (0, no error; 1, error) *
; if (! I2C_ERROR) received byte in ACC. *
; *
; *EMP .
I2C_RCV_BYTE:

Mov I2CON, #C_XMTA+C_DRDY jrel. SCL, rcv mode
I2C_RCV_ADDR:

MoV BIT_CNT, #8

CLR A ;i rcv first bit

July 1991 241

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

RCV_BIT:

ACALL WAIT_ATN
JNB DRDY, I2C_BASIC_ERR
DJINZ BIT_CNT,NOT_LAST_BIT
MoV C,RDAT
RLC A
RET
NOT_LAST_BIT:
ORL A, I2DAT ; save bit, rel. sCL
RL A

%
H

L
. x
H

. x
i

SJMP RCV_BIT

:I2C::I2C_BASI.ASM:I2C_TRX_BLOCK

FUNCTION NAME: I2C_TRX_BLOCK
PACKAGE: I12C
DESCRIPTION:

Transmit a block of bytes over the I2C bus

* ok ok * ok

*

i* The I2C_TRX_BLOCK function transmits as much bytes as *
;* defined in BUF_LEN (set R2), before the message handler *
;* 1is called, BUF_LEN_1 or BUF_LEN_2 is copied into BUF_LEN*
s * *
;* INPUT: pointer to begin of block data in BUF_PTR (RO) *
i byte counter in BIF_LEN (R2) *
;* OUTPUT: I2C_ERROR (0, no error; 1, error) *
; *
- .
I2C_TRX_BLOCK:

MOV A, @BUF_PTR ;load byte

ACALL I2C_TRX_BYTE

JB I2C_ERR, END_TRX_BLOCK

JB NO_ACK, END_TRX_BLOCK

INC BUF_PTR

DJNZ BUF_LEN, I2C_TRX_BLOCK

END_TRX_BLOCK:

i
p*
-
. %
i

P*

;*MPF:::I2C::I2C_BASI.ASM:I2C_RCV_BLOCK==
*

RET

FUNCTION NAME: I2C_RCV_BLOCK
PACKAGE : I12¢C
DESCRIPTION:

Receive a block of bytes from the I2C bus

;* The I2C_RCV_BLOCK function receives as much bytes as *
;* defined in BUF_LEN (set R2), before the message handler *
;* 1is called, BUF_LEN_1 or BUF_LEN_2 is copied into BUF_LEN*
L x *
;* INPUT: pointer to begin of receive buffer BUF_PTR (RO) *
P* byte counter in BUF_LEN (R2) *
;* OUTPUT: I2C_ERROR (0, no error; 1, error) *
P* if (!I2C_ERRCR) received bytes in buffer. *
L% *
;P *
ACK_RCV_BYTE:

MOV I2DAT, #0 ;send ACK

ACALL WAIT_ATN

JNB DRDY, I2C_BASIC_ERR
I2C_RCV_BLOCK:

ACALL I2C_RCV_BYTE

JB I2C_ERR, END_RCV_BLOCK

MOV @BUF_PTR, A ;save byte

INC BUF_PTR

DJINZ BUF_LEN, ACK_RCV_BYTE

Mov I2DAT, #80H ;send NACK

ACALL WAIT_ATN

JNB DRDY, I2C_BASIC_ERR
END_RCV_BLOCK:

RET
;*MPF:::I2C::I2C_BASI.ASM:WAIT_AT *
L * *
i
;* FUNCTION NAME: WAIT_ATN *
;* PACKAGE: I2C *
;* DESCRIPTION: *
i* The WAIT_ATN function waits for the ATN bit to be set. *
i * The function is left if the ATN bit is set or if the *
L x *

i

TIME_ERR bit is set. The TIME_ERR bit indicates tha

July 1991

t a

242

Philips Semiconductors) Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

;* bus timeout has occurred. If the 8xC751 enters this *
;* function as a master, the RECOVER bit is set, *
;* indicating that in case of a timeout, a bus recover *
;* action must be started. *
i* *
;Ewp :
WAIT_ATN:

JNB MASTER, WAIT

SETB RECOVER
WIAT:

JB TIME_ERR, END_WAIT

JNB ATN, WAIT
END_WAIT:

CLR RECOVER

RET
j*MPF:::I2C::I2C_BASI.ASM:TI_INT *
* *
i
i* FUNCTION NAME: TI_INT *
;* PACKAGE: 12C *
;* DESCRIPTION: *
;* The TI_INT handles the timeout interrupt. It is *
;* entered when a time out occurs (during wAIT_ATN) . *
;* The function is placed here to be sure that it is *
i* linked when placed in a library. x
; *
i
; *EMP *
TI_INT:

CLR 092H

ACALL SCL_DELAY

SETB 092H

JNB RECOVER,; RET_INT

SETB SDA

SETB SCL

JNB SCL, RET_INT

MoV BUS_ERR_CLKS, #9 ;SCL = 1
RETRY_LOOP:

CLR SCL

ACALL SCL_DELAY

SETB SCL

ACALL SCL_DELAY

JB SDA,MAKE_STOP ;if SDA = 1 make stop

DJNZ BUS_ERR_CLKS, RETRY_LOOP

RETI
MAKE_STOP:

CLR SCL

NOP

CLR SDA

ACALL SCL_DELAY

SETB SCL

ACALL SCL_DELAY

SETB SDA ;make stop condition

ACALL SCL_DELAY

SETB BUS_RECOVERED
RET_INT:

RETI
SCL_DELAY : ;jdelay of 9 periods (>= 6 micro sec.)

NoOP ; ACALL(2) + 5 NOP (4) + RET (2)

Nop

NOP

NoOP

NOP

RET
i* *
P* HISTORY *
P* *
i* *
;* 03-07-91 J.C. Pijnenburg original version *
;* *
N .

July 1991 243

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

STITLE(I2C_Test_Device command)

PR

i
i

P* SOURCE FILE : I2C_TDEV.ASM
it PACKAGE : I2C

i

i *

$DEBUG

o

i* INCLUDES

L x

$NOLIST

$INCLUDE (I2C_DATA.GLO)

SLIST

GLOBATL REFERENCES

EXTRN CODE(I2C_MESS_HAND)

*

GLOBAL FUNCTION DEFINITIONSH*
*

PUBLIC _I2C_TEST_DEVICE

LOCAL SYMBOL DECLARATIONS

TEST_DEVICE_MASK EQU 80H

;REP_STRT_BLK1
s RWN_BLK1

; ADDR2
;ADDR2_SUB

7 BLOCK2

; RWN_BLK2 =
;REP_STRT_BLK2 =
;T_DEVICE =

nwonon

n

n
Hooooooo

(NO)
(WRITE)
(NO)
(--)
(nO)
(=-)
(--)
(--)

CODE SEGMENT

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

i *MPF: :

i

;* FUNCTION NAME:

:I2C:

;* PACKAGE:
;* DESCRIPTION:

I Address a slave ,

L%
i

;* PROTOCOL:

.-

<S><SLV_.

:I2C_TDEV.ASM:I2C_TEST_DEVICE==

I2C_TEST_DEVICE
I12C

ADDR><W><A><P>

if ack received slave was present

;* INPUT: Message control byte I2C_CTRL (bit addressable)

i*
.

Message control block I2C_MCB, containing:

OUTPUT: I2C_ERROR byte

I2C_ADDR1 (slave address)

(bit addressable)

; *EMP

_I2C_TEST_DEVICE:

July 1991

MOV
AJMP

END

I2C_CTRL, #TEST_DEVICE_MASK
I2C_MESS_HAND

244

*
*
*
*
*
*
*
*
*
*
*
*

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

STITLE(I2C_Write command)

*
; .
i* SOURCE FILE : I2C_WRIT.ASM *
P* PACKAGE : I2C *
i* *
P* *
$DEBUG

o *
i INCLUDES *
i* *
$NOLIST

$INCLUDE (I2C_DATA.GLO)

SLIST

i* *
A GLOBAL REFERENCES *
ox

EXTRN CODE (I2C_MESS_HAND)

S *
i
i* GLOBAL FUNCTION DEFINITIONS?*
o *
i
PUBLIC _I2C_WRITE
i* *
i LOCAL SYMBOL DECLARATIONS *
s %
WRITE_MASK EQU O0OH
;REP_STRT_BLK1 = 0 (NO)
; RWN_BLK1 =0 (WRITE)
; ADDR2 =0 (NO)
;ADDR2_SUB =0 (--)
; BLOCK2 =0 (NO)
; RWN_BLK2 =0 (-=)
;REP_STRT_BLK2 = 0 (--)
; TEST_DEVICE =0 (--)
i* *
i CODE SEGMENT *
i* *
I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER
;*MPF:::I2C: :I2C_WRIT.ASM:I2C_WRIT *
s *
i
;* FUNCTION NAME: I2C_WRITE *
i* PACKAGE: I2C *
;* DESCRIPTION: *
i Write n bytes to a slave device. *
i* *
;* PROTOCOL: *
i <S><SLV_ADDR><W><A><D0><A><D1><A>. .<Dn-1><A><P> *
;ﬁ *
;* INPUT: Message control byte I2C_CTRL (bit addressable) *
Hd Message control block I2C_MCB, containing: *
P* I2C_ADDR1 (slave address) *
i* BUF_LEN1 (number of bytes (n) to trx.) *
Hd BUF_PTR1 (ptr to transmit buffer) *
i* *
;* OUTPUT: I2C_ERROR byte (bit addressable) *
s *
; *EMP *
_I2C_WRITE:
MoV I2C_CTRL, #WRITE_MASK
AJMP I2C_MESS_HAND
END

July 1991 245

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

$TITLE(I2C_Write_Sub command)

x *
* *
P* SOURCE FILE : I2C_WSUB.ASM *
¥ PACKAGE : I2C *
i* *
i *
$DEBUG

P* *
i INCLUDES -
*

$NOLIST X

$INCLUDE (I2C_DATA.GLO)

$LIST

i* *
i * GLOBAL REFERENCES *
x .

EXTRN CODE (I2C_MESS_HAND)

x *
;¥ GLOBAL FUNCTION DEFINITIONS*
- *
PUBLIC _I2C_WRITE_SUB
i* *
i LOCAL SYMBOL DECLARATIONS *
L *
WRITE_SUB_MASK EQU 00H
;REP_STRT_BLK1 = 0 (NO)
s RWN_BLK1 4 (WRITE)
7 ADDR2 =1 (YES)
;ADDR2_SUB =1 (YES)
; BLOCK2 =0 (NO)
; RWN_BLK2 =0 (=)
;REP_STRT_BLK2 = 0 (—-)
;TEST_DEVICE = 0 (--)
i* *
i* CODE SEGMENT *
Sx *

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

;*MPF:::I2C::I2C_WSUB.ASM:I2C_WRITE_SUB
o*

;* FUNCTION NAME: I2C_WRITE_SUB

;* PACKAGE: I2C

;* DESCRIPTION:

i * Write a block of data (a length n) preceded by a

i* sub address to a slave device.

o

;* PROTOCOL:

i * <S><SLV_ADDR><W><A><SUB_ADDR><A><Da0><A><Dal><A>..<A>
Hd <Dan-1><A><P>
S

;* INPUT: Message control byte I2C_CTRL (bit addressable)
i * Message control block I2C_MCB, containing:

i* I2C_ADDR1 (slave address)

P* BUF_LEN1 (number of bytes in block)

i* BUF_PTR1 (ptr to block)

i* I2C_ADDR2 (sub address)

*

;* OUTPUT: I2C_ERROR byte (bit addressable)
-

: *EMP

L R R

_I2C_WRITE_SUB:
MoV I2C_CTRL, #WRITE_SUB_MASK
AJMP I2C_MESS_HAND

END

July 1991 246

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

$TITLE(I2C_Write_Sub_SWinc command)

; *
. *
i * SOURCE FILE : I2C_WSWI.ASM *
i* PACKAGE : I2C *
L x *
i* *
$DEBUG

i+ *
i* INCLUDES *
x

$NOLIST

$ INCLUDE (I2C_DATA.GLO)

$INCLUDE (I2C_DATA.LOC)

$INCLUDE (REG751.H)

SLIST

o

i * GLOBAL REFERENCES *
ox

EXTRN CODE (I2C_MESS_HAND)

.k
i
it GLOBAL FUNCTION DEFINITIONSH*
L
i
PUBLIC _I2C_WRITE_SUB_SWINC
PUBLIC _I2C_WRITE_MEMORY
i*
i+ LOCAL SYMBOL DECLARATIONS *
o
i
WRITE_SUB_SWINC_MASK EQU 00CH
WRITE_MEMORY_MASK EQU 02CH
;REP_STRT_BLK1 = 0 (NO)
s RWN_BLK1 =0 (WRITE)
;ADDR2 =1 (YES)
iADDR2_SUB =1 (YES)
; BLOCK2 =0 (NO)
; RWN_BLK2 =0 or 1 (no blk2,
used for delay/no delay)
;REP_STRT_BLK2 = 0 (--)
; TEST_DEVICE =0 (-=)
i* *
P* CODE SEGMENT *
s *
i

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

;*MPF:::I2C: :I2C_WSWI.ASM:I2C_WRITE_SUB_SWINC==
*

i
;* FUNCTION NAME: I2C_WRITE_SUB_SWINC

;* PACKAGE: I2C

;* DESCRIPTION:

i* Transmit an I2C message, the message is split into
sub messages. Each sub message transmits one byte.

If the slave is an EEPROM a delay is generated after
each sub message. The RWN_BLK2 is not used in the
message handler (no block 2) and is therefore free to
distinguish between write to EEPROM (l=delay) and other*
(0= no delay)

*
*
*
*
*
*
*
*
*

* ok ok kR R R R R K % R ok kK Ak Ok

PROTOCOL :
<S><SLV_ADDR><W><A><SUB_ADDR><A><D0><A><P>
if (RWN_BLK2) delay 40 ms
<S><SLV_ADDR><W><A><SUB_ADDR+1><A><D1><A><P>
if (RWN_BLK2) delay 40 ms
<- - - - - ->
if (RWN_BLK2) delay 40 ms
<S><SLV_ADDR><W><A><SUB_ADDR+n-1><A><Dn-1><P>
if (RWN_BLK2) delay 40 ms

Ok ok b K k% F

July 1991 247

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

;* INPUT: Message control byte I2C_CTRL (bit addressable) *
i * Message control block I2C_MCB, containing: *
i* I2C_ADDR1 (slave address) *
i* BUF_LEN1 (number of bytes (mess) to trx.)*
i* BUF_PTR1 (ptr to transmit buffer) *
i* I2C_ADDR2 (sub address) *
s *
;* OUTPUT: I2C_ERROR byte (bit addressable) *
s *
L +EMP «
_I2C_WRITE_MEMORY:

MOV I2C_CTRL, #WRITE_MEMORY_MASK

SJIMP SET_MESS_CNT
_I2C_WRITE_SUB_SWINC:

MoV I2C_CTRL, #WRTIE_SUB_SWINC_MASK
SET_MESS_CNT:

MoV MEM_MESS_LEN, I2C_MCB+1

MoV I2C_MCB+1, #1 ;jset BUF_LEN_1 =1
SUB_MESS;

ACALL I2C_MESS_HAND

JB I2C_ERR, END_WSWI

INC I2C_MCB+2 jinc. BUFF_PTR_1

INC I2C_MCB+3 jinc. SUB_ADDR

JNB RWN_BLK2, NEXT

MOV MEM_DELAY_H, #EEPROM_PROG_DELAY

MOV MEM_DELAY_L, #00 ; 40 mS delay at 16MHz
PROGRAM_DELAY :

DJINZ MEM_DELAY_L, $

DJINZ MEM_DELAY_H, PROGRAM_DELAY
NEXT:

DJINZ MEM_MESS_LEN, SUB-MESS
END_WSWI :

RET

END

July 1991

248

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$TITLE (I2C_Write_Sub_Write command)

I* *
i* *
i* SOURCE FILE : I2C_WSUW.ASM *
i* PACKAGE : I2C *
L x *
i

ox *
$DEBUG

i* *
i* INCLUDES *
i* *
$NOLIST

$INCLUDE (I2C_DATA.GLO)

$LIST

i* *
i* GLOBAL REFERENCES *

EXTRN CODE (I2C_MESS_HAND)

* *
;
A GLOBAL FUNCTION DEFINITIONS:*
L * *
PUBLIC _I2C_WRITE_SUB_WRITE
i* *
i* LOCAL SYMBOL DECLARATIONS *
L x *
i
WRITE_SUB_WRITE_MASK EQU 1CH
;REP_STRT_BLK1 = 0 (NO)
s RWN_BLK1 =0 (WRITE)
; ADDR2 =1 (YES)
;ADDR2_SUB =1 (YES)
;BLOCK2 =1 (YES)
; RWN_BLK2 =0 (WRITE)
;REP_STRT_BLK2 = 0 (NO)
; TEST_DEVICE =0 (—-)
i* *
i * CODE SEGMENT *
i *
I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER
;*MPF:::I2C: : I2C_WSUW.ASM: I2C_WRITE_SUB_WRITE:

DESCRIPTION:

PROTOCOL:

I2C_ADDR1
BUF_LEN1
BUF_PTR1
I2C_ADDR2
BUF_LEN1
BUF_PTR1

OUTPUT: I2C_ERROR byte

H

EMP

FUNCTION NAME: I2C_WRITE_SUB_WRITE
PACKAGE : I2C

Write 2 blocks of data (a and b, length n and m)
preceded by a sub address into a single slave device

*
*
*
*
*
*
*
*
*
*
*
i* INPUT: Message control byte I2C_CTRL (bit addressable)
*
*
*
*
*
*
*
*
*
*
*

<S><SLV_ADDR><W><A><SUB_ADDR><A><Da0><A>. .<A><Dan-1><A>*

<Db0><A>. .<Dbm-1><A><P>*

*

Message control block I2C_MCB, containing:

*
*
(slave address) *
(number of bytes in block a) *
(ptr to block a) *
(sub address) *
(number of bytes in block b) *
(ptr to block b) *
*
*
*
*

(bit addressable)

_I2C_WRITE_SUB_WRITE:

MoV I2C_CTRL, #WRITE_SUB_WRITE_MASK
AJMP T2C_MESS_HAND
END

July 1991

249

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$TITLE(I2C_Write_Sub_Read command)
*

.k

i* SOURCE FILE : I2C_WSUR.ASM
i* PACKAGE : I2C
"

.

* ok ok k% %

$DEBUG

*

H

i* INCLUDES
s *

i
$NOLIST

$INCLUDE (I2C_DATA.GLO)
SLIST

i* GLOBAL REFERENCES

*

EXTRN CODE (I2C_MESS_HAND)

i* GLOBAL FUNCTION DEFINITIONS

PUBLIC _I2C_WRITE_SUB_READ

i* LOCAL SYMBOL DECLARATIONS

WRITE_SUB_READ_MASK EQU 7CH

jREP_STRT_BLK1 = 0 (NO)
;RWN_BLK1- =0 (WRITE)
i ADDR2 =1 (YES)
;ADDR2_SUB =1 (YES})
i BLOCK2 =1 (YES)
; RWN_BLK2 =1 (READ)
;REP_STRT_BLK2 =1 (YES)
; TEST_DEVICE =0 (-=)

* %

CODE SEGMENT

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

;*MPF:::I2C::I2C_WSUR.ASM:I2C_WRITE_SUB_READ==
FUNCTION NAME: I2C_WRITE_SUB_READ

PACKAGE: I2¢C
DESCRIPTION:

address, generate repeated start and read a second
block of data (b length m) from the slave device

PROTOCOL:

<S><SLV_ADDR><R><A><Db0><A>. .<A><Dbm-1><N><P>

INPUT: Message control byte I2C_CTRL (bit addressable)
Message control block I2C_MCB, containing:

; I2C_ADDR1 (slave address)

i BUF_LEN1 (number of bytes in block a)

; BUF_PTR1 (ptr to block a)

i I2C_ADDR2 (sub address)

i BUF_LEN1 (number of bytes in block b)
BUF_PTR1 (ptr to block b)

OUTPUT: I2C_ERROR byte (bit addressable)

I R)

Write a block of data (a length n) preceded by a sub

<S><SLV_ADDR><W><A><SUB_ADDR><A><Da0><A>. .<A><DaN-1><A>

*EMP

_I2C_WRITE_SUB_READ:
MoV I2C_CTRL, #WRITE_SUB_READ_MASK
AJMP I2C_MESS_HAND

END

July 1991 250

*

Ok R K % K E K E R K F K R R K R % K Ok X % %

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

$TITLE(I2C _Write_Com_Write command)

Lx .
i
P* SOURCE FILE : I2C_WCOW.ASM *
i* PACKAGE : I2C *
i N
o *
$DEBUG
*
INCLUDES *
*
i
$NOLIST
$INCLUDE (I2C_DATA.GLO)
$SLIST
i *
i* GLOBAL REFERENCES *
ox *
;
EXTRN CODE (I2C_MESS_HAND)
i* *
i* GLOBAL FUNCTION DEFINITIONS*
L x *
;
PUBLIC _I2C_WRITE_COM_WRITE
o *
i* LOCAL SYMBOL DECLARATIONS *
ox *
H
WRITE_COM_WRITE_MASK EQU 10H
;REP_STRT_BLK1 = 0 (NO)
; RWN_BLK1 =0 (WRITE)
; ADDR2 =0 (NO)
; ADDR2_SUB =0 (=-)
; BLOCK2 =1 (YES)
; RWN_BLK2 =0 (WRITE)
;REP_STRT_BLK2 = 0 (-=)
; TEST_DEVICE =0 (NO)
o
i* CODE SEGMENT *

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

S *MPF: ::I2C: : I2C_WCOW.ASM: I2C_WRITE_COM_WRITE= *
o *
;* FUNCTION NAME: I2C_WRITE_COM_WRITE *
i* PACKAGE: I2C *
;* DESCRIPTION: *
i* Write a 2 blocks of data (a,b length n,m) in a single *
i* message to a slave device *
A another slave device. *
o *
H

i* PROTOCOL: *
i* <S><SLV_ADDR1><W><A><Da0><A><Dal><A>. .<A><Dan-1><A> *
i* <Db0><A><Dbl><A>. .<A><Dbm-1><A><P> *
L x *
;i* INPUT: Message control byte I2C_CTRL (bit addressable) *
i* Message control block I2C_MCB, containing: *
i* I2C_ADDR1 (slave address first device) *
P* BUF_LEN1 (number of bytes in block a) *
i* BUF_PTR1 (ptr to block a) *
i* BUF_LEN1 (number of bytes in block b) *
Hd BUF_PTR1 (ptr to block b) *
* *
i

;* OUTPUT: I2C_ERROR byte (bit addressable) *
Sx *
; *EMP *

_I2C_WRITE_COM_WRITE:

MoV I2C_MCB+5,I2C_MCB+4
MoV I2C_MCB+4,I2C_MCB+3
MoV I2C_CTRL, #WRITE_COM_WRITE_MASK

AJMP I2C_MESS_HAND

END

July 1991 251

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers - EIE/AN91007

$TITLE(I2C_Write_Rep_Write command)
s x

*
i
i* *
i* SOURCE FILE : I2C_WREW.ASM *
i* PACKAGE : I2C *
i* *
i* *
$DEBUG
% *
i+ INCLUDES *
i* *
$NOLIST
$INCLUDE (I2C_DATA.GLO)
$LIST

A *
i* GLOBAL REFERENCES *
o -

EXTRN CODE (I2C_MESS_HAND)
* *

i* GLOBAL FUNCTION DEFINITIONS?®*
*

PUBLIC _I2C_WRITE_REP_WRITE

.k *
i* LOCAL SYMBOL DECLARATIONS *
ox *
WRITE_REP_WRITE_MASK EQU 54H

;REP_STRT_BLK1 = 0 (NO)

;RWN_BLK1 =0 (WRITE)

;ADDR2 =1 (YES)

;ADDR2_SUB =0 (NO)

;BLOCK2 =1 (YES)

; RWN_BLK2 =0 (WRITE)

;REP_STRT_BLK2 = 1 (YES)

; TEST_DEVICE =0 (==)
ix *
i* CODE SEGMENT *
i* *

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

*MPF:::I12C::I2C_WREW.ASM:I2C_WRITE_REP_WRITE===:
*

; *
;* FUNCTION NAME: I2C_WRITE_REP_WRITE *
;* PACKAGE: I2C *
;* DESCRIPTION: *
¥ Write a block of data (a length n) to a slave device, *
i* sent repeated start and write a block (b length m) to *
i* another slave device. *
* *
;* PROTOCOL: *
i* <S><SLV_ADDR1><W><A><Da0><A><Dal><A>..<A><Dan-1><A> *
;* <S><SLV_ADDR2><W><A><Db0><A><Dbl><A>..<A><Dbm-1><N><P> *
* *
;* INPUT: Message control byte I2C_CTRL (bit addressable) *
i* Message control block I2C_MCB, containing: *
i* I2C_ADDR1 (slave address first device) *
i BUF_LEN1 (number of bytes in block a) *
i* BUF_PTR1 (ptr to block a) *
P* I2C_ADDR2 (slave address second device) *
i* BUF_LEN1 (number of bytes in block b) *
i* BUF_PTR1 (ptr to block b) *
* *
;* OUTPUT: I2C_ERROR byte (bit addressable) *
i * *
- .

_I2C_WRITE_REP_WRITE:
MoV I2C_CTRL, #WRITE_REP_WRITE_MASK
AJMP I2C_MESS_HAND

END

July 1991 252

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$TITLE(I2C_Write_Rep_Read command)

*

L x *

i* SOURCE FILE : I2C_WRER.ASM *

i* PACKAGE . I2C *

x *

x *

$DEBUG

i* *

i* INCLUDES *

. *

$NOLIST

$INCLUDE (I2C_DATA.GLO)

$LIST

i* *

i* GLOBAL REFERENCES *

ox *
EXTRN CODE (I2C_MESS_HAND)

P* *

P* GLOBAL FUNCTION DEFINITIONS*®*

% *

7 *MPF:::I12C: :I2C_WRER.ASM:I2C_WRITE_REP_READ===:

* *

Bk kK ok K kK kK Rk %k K & o % 4

i
i
i
.
i
-
i

; *EMP

PUBLIC _I2C_WRITE_REP_READ

LOCAL SYMBOL DECLARATIONS

WRITE_REP_READ_MASK EQU 74H

;REP_STRT_BLK1 = 0 (NO)
; RWN_BLK1 =0 (WRITE)
; ADDR2 =1 (YES)
; ADDR2_SUB =0 (NO)
i BLOCK2 =1 (YES)
; RWN_BLK2 =1 (READ)
;REP_STRT_BLK2 = 1 (YES)
; TEST_DEVICE =0 (==)

CODE SEGMENT

*

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

FUNCTION NAME: I2C_WRITE_REP_READ

PACKAGE: I2C

DESCRIPTION:

Write a block of data (a length n) to a slave devic
sent repeated start and read a block (b length m) £
another slave device.

PROTOCOL :
<S><SLV_ADDR1><W><A><Da0><A><Dal><A>..<A><Dan-1><A>
<S><SLV_ADDR2><R><A><Db0><A><Db1l><A>. .<A><Dbm-1><N>

INPUT: Message control byte I2C_CTRL (bit addressable

Message control block I2C_MCB, containing:
I2C_ADDR1 (slave address first device)
BUF_LEN1 (number of bytes in block a)
BUF_PTR1 (ptr to block a)

I2C_ADDR2 (slave address second device
BUF_LEN1 (number of bytes in block b)
BUF_PTR1 (ptr to block b)

OUTPUT: I2C_ERROR byte (bit addressable)

e,
rom

<P>

)

)

_I2C_WRITE_REP_READ:

MoV I2C_CTRL, #WRITE_REP_READ_MASK
AJMP I2C_MESS_HAND

END

July 1991

253

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$TITLE(I2C_Read command)
L x

*
i *
i* SOURCE FILE : I2C_READ.ASM *
i* PACKAGE : I2C *
* *
i* *
$DEBUG
P* *
i INCLUDES *
i* *
$NOLIST
$INCLUDE (I2C_DATA.GLO)
$LIST
- *
P GLOBAL REFERENCES *
L x *
EXTRN CODE (I2C_MESS_HAND)
* *
i * GLOBAL FUNCTION DEFINITIONS*
L *
i
PUBLIC _I2C_READ
PUBLIC _I2C_READ_STATUS
i* *
i* LOCAL SYMBOL DECLARATIONS *
- *
READ_MASK EQU 02H
;REP_STRT_BLK1l = 0 (NO)
; RWN_BLK1 1 (READ)
; ADDR2 =0 (NO)
;ADDR2_SUB =0 (--)
; BLOCK2 =0 (NO)
; RWN_BLK2 0 (--)
;REP_STRT_BLK2 = 0 (==)
; TEST_DEVICE =0 (--)
* *
p* CODE SEGMENT *
L *
I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER
;*MPF:::I2C::I2C_READ.ASM:I2C_READ *
L * *
;
;* FUNCTION NAME: I2C_READ *
;* PACKAGE: I2C *
;* DESCRIPTION: *
L

; Read a block of data from a slave device (READ) or read*
; a single byte from a slave device (READ_STATUS)
i

PROTOCOL:
<S><SLV_ADDR><R><A><D0><A><D1><A>. .<A><Dn-1><N><P>
or
<S><SLV_ADDR><R><A><STATUS><N><P>

*
*
*
*
*

s *

*

*
*
*
*
*
*

;* INPUT: Message control byte I2C_CTRL (bit addressable)
Message control block I2C_MCB, containing:
I2C_ADDR1 (slave address)
BUF_LEN1 (number of bytes in block)

BUF_PTR1 (ptr to store status)

i

;* OUTPUT: I2C_ERROR byte (bit addressable)

P *

; *EMP
_I2C_READ_STATUS:

MOV I2C_MCB+2,II2C_MCB+1

MOV I2C_MCB+1, #1 ;buffer length = 1
_1i2C_READ:

MOV I2C_CTRL, #READ_MASK

AJMP I2C_MESS_HAND

Ok kR ok Gk F ok Ok ok Ok K F % k%

END

July 1991 254

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

$TITLE(I2C_Read_Sub command)

*
i* *
P* SOURCE FILE : I2C_RSUB.ASM »
p* PACKAGE : I2C *
i * *
* *
$DEBUG
o
i* INCLUDES *
i *
$NOLIST
$INCLUDE (I2C_DATA.GLO)
$LIST
o *
i* GLOBAL REFERENCES *
L x *
;
EXTRN CODE (I2C_MESS_HAND)
'.t *
A GLOBAL FUNCTION DEFINITIONS®*
ox *
i
PUBLIC _I2C_READ_SUB
;* 2 *
i* LOCAL SYMBOL DECLARATIONS *
. % = *
READ_SUB_MASK EQU OFH
;REP_STRT_BLK1 = 1 (YES)
;RWN_BLK1 =1 (READ)
;ADDR2 =1 (YES)
;ADDR2_SUB =1 (YES)
; BLOCK2 =0 (NO)
; RWN_BLK2 =0 (--)
;REP_STRT_BLK2 = 0 (—-)
; TEST_DEVICE =0 (--)
i+ *
i* CODE SEGMENT *
ox *
i

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

i *MPF:::I2C: :I2C_RSUB.ASM:I2C_READ_SUB -

*

FUNCTION NAME: I2C_READ_SUB

PACKAGE: I12C

DESCRIPTION:
Read a block of data (a length n) preceded by a
sub address from a slave device.

PROTOCOL :
<8><SLV_ADDR><W><A><SUB_ADDR><A><S><SLV_ADDR><R><A>
<Da0><A><Dal><A>..<A><Dan-1><A><P>

INPUT: Message control byte I2C_CTRL (bit addressable)
Message control block I2C_MCB, containing:
I2C_ADDR1 (slave address)
BUF_LEN1 (number of bytes in block)
BUF_PTR1 (ptr to block)
I2C_ADDR2 (sub address)

* ok ok ok ok ok ok % ok k% kK Ok * F

OUTPUT: I2C_ERROR byte (bit addressable)

F ok R ok kK R R K ok ok Rk R Kk K K K * Ok * %

; *EMP
_I2C_READ_SUB:
MOV I2C_CTRL, #READ_SUB_MASK
AJMP I2C_MESS_HAND

END

July 1991 ’ 255

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

$TITLE(I2C_Read_Rep_Write command)

- *
i

x *
;

P* SOURCE FILE : I2C_RREW.ASM *
i* PACKAGE : I2C *
i* *
i* *
$DEBUG

it *
i* INCLUDES *
P *
$NOLIST

$INCLUDE (I2C_DATA.GLO)

$LIST

i* *
P* GLOBAL REFERENCES *
* *

EXTRN CODE(I2C_MESS_HAND)

*
i GLOBAL FUNCTION DEFINITIONS*®*

PUBLIC _I2C_READ_REP_WRITE

i* LOCAL SYMBOL DECLARATIONS *

READ_REP_WRITE_MASK EQU 56H

;REP_STRT_BLK1 = 0 (NO)

; RWN_BLK1 =1 (READ)

;ADDR2 =1 (YES)

;ADDR2_SUB =0 (NO)

; BLOCK2 =1 (YES)

; RWN_BLK2 =0 (WRITE)

;REP_STRT_BLK2 = 1 (YES)

; TEST_DEVICE =0 (--)
i* *
i* CODE SEGMENT *
* *

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

;*MPF:::I2C::I2C_RREW.ASM:I2C_READ_REP_WRITE==

FUNCTION NAME: . I2C_READ_REP_WRITE

PACKAGE: I2C

DESCRIPTION:
Read a block of data (a length n) from a slave device,
sent repeated start and write a block (b length m) to
another slave device.

*
*
*
*
*
*
*
*
* PROTOCOL:

* <S><SLV_ADDR1><R><A><Da0><A><Dal><A>..<A><Dan-1><N>
P <S><SLV_ADDR2><W><A><Db0><A><Db1l><A>. .<A><Dbm-1><A><P>

*

*

*

*

*

*

*

*

*

*

INPUT: Message control byte I2C_CTRL (bit addressable)
Message control block I2C_MCB, containing:

I2C_ADDR1 (slave address first device)
BUF_LEN1 (number of bytes in block a)
BUF_PTR1 (ptr to block a)
I2C_ADDR2 (slave address second device)
BUF_LEN1 (number of bytes in block b)
BUF_PTR1 (ptr to block b)

i* OUTPUT: I2C_ERROR byte (bit addressable)

; *EMP

POk ko ok o F R R R b R Ok R & E Ok A R A K k% % %

_I2C_READ_REP_WRITE:
Mov I2C_CTRL, #READ_REP_WRITE_MASK
AJMP I2C_MESS_HAND

END

July 1991 256

Philips Semiconductors

Application note

I2C driver routines for 8XC751/2 microcontrollers

EIE/AN91007

$TITLE(I2C_Read_Rep_Read command)

* * Ok A k%

* %

*
a’)
i* SOURCE FILE : I2C_RRER.ASM
i* PACKAGE : I2C
-
"
$DEBUG
o
i* INCLUDES
x
$NOLIST
$INCLUDE (I2C_DATA.GLO)
$LIST
o
i* GLOBAL REFERENCES
. *
EXTRN CODE (I2C_MESS_HAND)
;*
it GLOBAL FUNCTION DEFINITIONS
.k
PUBLIC _I2C_READ_REP_READ
i
i* LOCAL SYMBOL DECLARATIONS
ox
READ_REP_READ_MASK EQU 076H
;REP_STRT_BLK1 = 0 (NO)
; RWN_BLK1 =1 (READ)
; ADDR2 =1 (YES)
;ADDR2_SUB =0 (NO)
; BLOCK2 =1 (YES)
; RWN_BLK2 =1 (READ)
;REP_STRT_BLK2 = 1 (YES)
; TEST_DEVICE =0 (==)

i *MPF:::I2C::I2C_RRER.ASM:I2C_READ_REP_READ==:

CODE SEGMENT

I2C_DRIVER SEGMENT CODE
RSEG I2C_DRIVER

i* FUNCTION NAME:
i* PACKAGE: I2C
;* DESCRIPTION:

I2C_READ_REP_READ

Hd Read a block of data (a length n) from a slave device,

*
*
*
*
; *
i* sent repeated start and read a block (b length m) from *
P* another slave device. *
s *
i
i* PROTOCOL: *
I <S><SLV_ADDR1><R><A><Da0><A><Dal><A>..<A><Dan-1><N> *
i* <S><SLV_ADDR2><R><A><Db0><A><Dbl><A>. .<A><Dbm-1><N><P> *
o *
;* INPUT: Message control byte I2C_CTRL (bit addressable) *
i* Message control block I2C_MCB, containing: *
i* I2C_ADDR1 (slave address first device) *
Hd BUF_LEN1 (number of bytes in block a) *
i* BUF_PTR1 (ptr to block a) *
P* I2C_ADDR2 (slave address second device) *
i* BUF_LEN1 (number of bytes in block b) *
i* BUF_PTR1 (ptr to block b) *
s* *
;* OUTPUT: I2C_ERROR byte (bit addressable) *
S *
i
; *EMP:

*

*

_I2C_READ_REP_READ:

MoV I2C_CTRL, #READ_REP_READ_MASK
AJMP I2C_MESS_HAND
END

July 1991

257

Philips Semiconductors Application note

I2C driver routines for 8XC751/2 microcontrollers EIE/AN91007

I2C Slave routines

$TITLE(I2C_SLAVE)

’.* *
P* *
i* SOURCE FILE : I2C_SLAV.ASM *
P* PACKAGE : I2C *
i* *
i* *

$DEBUG

*

i* INCLUDES *
P* *

$SNOLIST

$INCLUDE (I2C_DATA.GLO)

$INCLUDE (REG751.H)

$LIST

i* *
P * GLOBAL REFERENCES *
* *

EXTRN CODE(I2C_TRX_BYTE)
EXTRN CODE (I2C_RCV_BYTE)
EXTRN CODE(I2C_RCV_ADDR)
EXTRN CODE (ADDR_COMPARE)

s *
i* GLOBAL FUNCTION DEFINITIONS*
S *
PUBLIC _I2C_SLV_TRX
PUBLIC _I2C_SLV_RCV
PUBLIC ADDR_RECOG
i* *
i* LOCAL SYMBOL DECLARATIONS *
s *
i
SLV_BUF_PTR_W SET R1
BIT_CNT SET R3
I2C_RELEASE EQU OF4H
i *MPF: : : I2C_SLAV] *
i* *
;* FUNCTION NAME: 12C_SLAVE_ROUTINES *
;* DESCRIPTION: 12C *
;*<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>